Marina Santini (2016)

03: Decision Trees -- Transcripts

Changelog:
--8 Nov 2016

Att: The following text is transcribed from the recordings about DTs, that were made in
2015 and that you find on Scalable Learning. The slides on the course websites have
been updated in 2016. You might experience a mismatch between recordings 2015 and
slides 2016. Students who attended the Math course (spring 2016) have already studied
entropy and surprisal (same slides, same recordings). Slides 2016 will be used for new
recordings in the future.

Lecture 3: Transcripts - Decision Trees (1)

Decision Trees 1

1. Part 1a: In this video clip we are going to talk about a simple and intuitive learning
model: the decision tree.

2. There will be 2 lectures on decision trees. In today’s lecture, I will explain how a
decision tree works and I will cover some basic characteristics of this model, such as
Greediness, the Divide and Conquer notion, the Inductive Bias, the Loss function, the
Expected loss, the Empirical error, and at the end we will summarize the induction.

3. We said previously that we could simplify the concept on learning in the field of ML
by saying that we want to make informed guesses about the future. The past is
represented by the examples stored in the training set, and the future is represented
by the unseen examples. We can evaluate the generalization ability of our learner by
using a test set. In the figure we have classified examples of iris flowers divided into
three classes (setosa, versicolor, virginica), each example is represented by
measurements. The purpose of a machine learning model would then be to guess
correctly the class of a previously unseen iris flower based only on its
measurements, that might differ in some respects from the measurements stored in
the training set. So we want to make a good prediction based on our previous
experience of irises. Our experience is formalized in the dataset.

4. Now, let’'s make a more specific example by using the same problem that is
presented in Daume’s book. Our problem is now to predict if a student will like a
course or not based on his/her ratings on previous courses. We could make
predictions by asking yes-no questions to the student. For instance, does the new
course belong to the Systems program? Has the student liked most previous
Systems’ courses, etc.? And we could build a diagram, a tree-like diagram like the one
you see on the slide.

5. When we build our supervised decision tree learning model, we do not ask questions
directly to the students. Instead, we use training data in order to answer the
questions. Essentially, we have a dataset similar to that on the screen where each
row is an example paired with the correct answer. In the dataset on the screen, the
column Rating is the class. Interpret the classes as Like (meaning that the student
liked the course) if the rating is 0, +1, +2, and Hate if the student did not like the
course and ranked it using -2 and -1.

6. So the ratings in this specific dataset are the class labels, the column names are
questions and they are our features, the responses, yes and no, are the feature
values. So we have here a feature representation that we assume is useful to solve
our classification problem. With this data, we could build many possible trees. Since



10.

11.

12.
13.

Marina Santini (2016)

03: Decision Trees -- Transcripts

we do not want to spend months in deciding which of these possible trees is the best
tree, we proceed greedily.

Being greedy, in this context means: if you could ask only one question, which
question would you ask? Which is the most useful question? One can start depicting
the usefulness of questions in histograms. Look at the histograms on the screen. Each
histogram shows the frequency of like/hate labels for each possible value of a
feature. From these histograms, you can see that asking the first question (that is, is
it easy or not?) is not useful because there is no clear divide between yes and no. On
the contrary, asking the question “is this a Systems course” (the fourth histogram on
the screen) is useful because if the value is no, you can be sure that students liked the
course, if the value is yes students hated the course. Now, pick up a random example
from this dataset, and ask this question. If you get the answer no, you would possibly
be inclined to say that the class label of the example is “like”. On the contrary, if you
would get the answer yes to this questions, you would be inclined to think the class
label is hate. Try and use this feature and our assumptions to make informed guesses
on the examples of the dataset. You will see that you will guess right many times. So,
if you choose this feature you can make reliable informed guesses. Repeat the
computation for each of the available features, and score them. When you have to
choose which feature to consider first, you choose the one with the highest score. In
this way you choose the ROOT node of the decision tree.

How do we choose subsequent features? Here is where the notion of divide and
conquer is applied. When you ask the first question “Is the course a Systems course”?
you can partition the data into 2 sets: the no set and the yes set. This is the divide
step: you get 2 partitions. In the Conquer step, repeat the same process you have
applied to choose the first feature on the examples listed under the no branch and
the yes branch of the tree.

At one point, we realize that asking additional questions becomes redundant, or that
we have run out of questions. In both cases, we create a LEAF NODE and we guess
the most prevalent answer based on the training data you are looking at.

The goal of the decision tree learning model is to figure out what questions to ask in
what order, what answer to predict once you have asked enough questions. The
inductive bias of decision trees assumes that the things that we want to learn to
predict are more like the root node and less like the other branch nodes.

We will talk more about the basic characteristics of decision trees in the next video
clip.

Part 1b: Welcome back to decision trees part 1

Let’s now start with an informal definition of the decision tree model. A decision tree
is a flow-chart-like structure, where each internal (non-terminal) node denotes a test
on an attribute, each branch represents the outcome of a test, and each leaf (or
terminal) node holds a class label. The topmost node in a tree is the root node.

14. Let’s now formalize the definition. We know that the performance of a learning

algorithm should be measured on unseen data. We can use a function to measure the
performance and we call it Loss function: The loss function is the price paid for
inaccuracy of predictions in classification problems. Loss is this case means
“misclassifications or wrong predictions” How “bad” is our system’s predictions in
comparison to the truth? In particular, if y is the truth and y-hat is the system’s
prediction, then the function I(y, y*) is a measure of error. Note that the loss function
is something that we must decide on based on the goals of learning. There are many
loss functions that we could use. Let’s use the simplest here: the zero-one loss. If y is



Marina Santini (2016)

03: Decision Trees -- Transcripts

equal to y hat, the system’s classification is correct so we have 0 errors. If y is not
equal to y hat, the classification is incorrect, so we have to count one error.:

Classification: zerolone loss ¢(y, 1) = (l) lfti/l = }/.
otherwise

15. Distribution: Now that we have defined our loss function, we need to consider where
the data (training and test) comes from. We talked about distribution before and we
focussed on normal distribution. We now know that normal distribution is a bell-
shaped distribution of data. if we know a priori what your data generating
distribution is, our learning problem becomes easier. In this case, we are not making
any assumptions about what the distribution D looks like. We are assuming that we
do not know what D is. Perhaps the hardest thing about machine learning is that we
don’t know what D is: all we get is a random sample from it. This random sample is
our training data. We can say that the Data Generating Distribution is a probability
distribution D over input/output pairs. If we write x for the input
(examples/instances) and y for the output (the rating), then D is a distribution over
(x, y) pairs. Remember that our problem is guess the rating of an unseen example. A
useful way to think about D (Data Generating Distribution) is that it gives high
probability to reasonable (x, y) pairs, and low probability to unreasonable (x, y)
pairs.

16. Expected Loss: We are given access to training data, which is a random sample of
input/output pairs drawn from D. Based on this training data, we need to induce a
function “f” that maps new inputs to corresponding prediction. The key property that
f should obey is that it should do well on future examples that are also drawn from D.
Formally, its expected loss (epsilon) over the distribution (D) with respect to “”
should be as small as possible, meaning that we should minimize the expected loss,
meaning that we should make as few error as possible. :

€ £ Exy)~p Ly, f(x))] = )} D(x,y)t(y, f(x))
)

(xy

17. Now let’s read and anlyse the formulae:

Epsilon is equal by definition to blackboard-bold E sub the pair x y over script D of 1 of
the pairy f of x. All this corresponds to: Sum (big sigma means sum) over all the pairs in
script D of x and y times 1 of y and f of x. This is exactly the weighted average loss over
all the pairs x and y in D, weighted by their probability under the distribution D. In
practical terms, this formula accounts for the average loss if we draw a bunch of xy pairs
for a distribution D.

18. Training error: The difficulty in minimizing our expected loss formula is that we
don’t know anything about the distribution D. but we know that in our training data we
have certain number of xy pairs. So in order to compute our training error epsilon-hat
(which is an average, hat indicated an), we divide the expected loss (the formula is
explained in the previous slide) by the number of training examples, 1 over capital N.



Marina Santini (2016)

03: Decision Trees -- Transcripts

And we get the formula that you see on the screen: the training error epsilon-hat (the
hat means that it is an estimate) is equal by definition to 1 over N of the Sum from n=1 to
capital N of “1” of y and f of x. That is, our training error is simply our average error over
the training data. The challenge for our learned function needs to generalize beyond the
training data to some future data that it might not have seen yet. the training error
epsilon-hat is equal by definition to 1 over N of the Sum from n=1 to capital N of “1” of y
and f of x.

19. The training error is sometimes called empirical error. Remember that terminology
can be confusing sometimes. The empirical error can be called the “training error”,
“test error”, or “observed error” depending on whether it is the error on a training
set, test set, or a more general set.

What out! Formulae can be written using different notation styles. For example, the
formula on this slide is the formula for the empirical error given by Alpaydin: the
empirical error is the proportion of training instances where the predictions of h
(the hypothesis = the informed guess) do not match the required values given in big
X (the training set). The formula should be read in this way: the empirical error of
the hypothesis h given the training set X is the sum of the training instances (small x)
where the hypothesis on the class label r fails.

N
E(h|X) =) 1(h(x") # 1)

(=1

20. Induction: So, putting it all together, we get a formal definition of induction machine
learning: Given a loss function | and a sample small d

from some unknown distribution capital D, you must compute a function f that has low

expected error epsilon over D with respect to 1.

21. Ok. We stop here today. Thank you for your attention.

Termininology

DEFINITION OF 'DISCRETE DISTRIBUTION'
The statistical or probabilistic properties of observable (either finite or countably
infinite) pre-defined values. Unlike a continuous distribution, which has an infinite



Marina Santini (2016)

03: Decision Trees -- Transcripts

number of outcomes, a discrete distribution is characterized by a limited number of
possible observations. Discrete distribution is frequently used in statistical modeling
and computer programming. Also known as a "discrete probability distribution"”.

BREAKING DOWN 'DISCRETE DISTRIBUTION'

Examples of discrete probability distributions include binomial distribution (with a
finite set of values) and Poisson distribution (with an countably infinite set of values).
The concept of probability distrubtions and the random variables they describe are the
underpinnnings of probability theory and statistical analysis.

Terminology: Ordered Pairs: And here is another way to think about functions: Write
the input and output of a function as an "ordered pair”, such as (4,16). They are called
ordered pairs because the input always comes first, and the output second: (input,
output) So it looks like this: (x, f(x)).

Decision Trees (2)

Part 2a

1. Wecome to Lecture 4. In this lecture we will continue the exploration of decision
trees.

2. These are the acknowledgements and the references for this presentation.

3. Today we will talk about: Attribute selection, Entropy, Suprisal, Information Gain,
Gain Ratio, Rules, Pruning.

4. We said that the problem of constructing a decision tree can be expressed
recursively. First we select the root node and make a branch for each possible value.
The root node splits up the training set into subsets, into partitions: one for every
value of the attribute. Then we repeat the process recursively for every attribute. We
stop when the data cannot split any further.

5. Let's make an example with the weather dataset. With this dataset we want to
determine whether we can play outside or not given certain weather conditions.

6. There are 4 possibilities, one for each attribute as shown on the screen. Which is the
best root node? Which attribute do you think is the best choice? We know that any
leaf with only one single class (either yes or no) will not have to be split further and
the recursive process will terminate. Since it is recommended to build trees as small
as possible, we would like that the recursive process would stop as soon as possible.
If we had a measure of purity, that is a measure that tells us which attribute
produces fewer splits, we could choose the purest node.

7. The measure of purity that we could use is called the information and it is measured
in bits. It is calculated based on the number of yes or no associated with each node of
the tree, it represents the expected amount of information that would be needed to
specify when a new instance should be classified yes or no. What does your intuition
say? Which attribute is the best in this context?

8. Trust me for a second and let’s say that the best attribute for the root note is outlook.
One thing that you could notice is that the outlook branching is the only one in which
anode is completely pure (overcast has only yes) and this gives considerable
advantage over the other attributes if we want a small tree.



0.

10.

11.

12.

13.

14.

15.

Marina Santini (2016)

03: Decision Trees -- Transcripts

If we continue with the application of the same idea, we end up with a decision tree
like the one shown on the screen. [deally the process terminates when all leaf nodes
are pure, but there are exception to this. Usually, the process terminates when the
data cannot be split any further.

Why is the outlook attribute the best attribute to split upon? We said that we prefer
small trees, so the best way to achieve this is to choose attributes that produces the
“purest” node, node with no splits or fewer splits. So, the information measure
measures how pure a branch is.

Now a popular measure that helps us choose the best attribute to split upon is a
measure called information gain. Information gain increases with the average purity
of the subsets. The strategy is then: choose attributes that give the greatest
information gain.

The information measure should tell us something about the purity or impurity of a
node. Now let’s consider the kind of properties that an information quantity should
have in our scenario. In our scenario the information quantity can be defined by 3
properties: the first property says: When the number of either yes OR no is zero (that
is the node is pure) the information is zero. If a node is pure, there is no surprise, we
are certain about the nature of the node, we are certain about the outcome. The
second property says: When the number of yes and no is equal, the information
reaches its maximum because we are very uncertain about the outcome. The 3rd
property says that the measure must be useful in a complex scenario, that is the
measure should be applicable to a multi-staged decision process. Essentially Entropy
is the only function that satisfies all three properties!

Information gain is a measure of impurity and it is based on a function called
entropy. The notion of entropy comes from information theory. Entropy (also called

Shannon entropy) is the expected value (average) of the information contained in
each message received. The entropy of the message is its amount of uncertainty; it
increases when the message is closer to random, and decreases when it is less
random. The idea here is that the less likely an event is, the more information it
provides when it occurs. In information theory, 'information' doesn't necessarily
mean useful or structured information; it simply describes the amount of
randomness of the message. So, when the probability is 0.5, entropy is at its peak of
1.

Entropy is based on surprisal. So let’s analyse the concept of surprisal first: In
information theory, self-information or surprisal is a measure of the information
content associated with an event in a probability space. It represents the "surprise”
of seeing the outcome (a highly improbable outcome is very surprising). By
definition, the amount of surprisal contained in a probabilistic event depends only on
the probability of that event: the smaller its probability, the larger the surprisal
associated with receiving the information that the event occurred. By definition,
the measure of surprisal is positive and additive. If an event C is the intersection of
two independent events A and B, then the amount of information at the proclamation
that C has happened, equals the sum of the amounts of information at proclamations
of event A and event B respectively: I[(A N B)=I(A)+I(B). You are already familiar with
the intersection of probability events.

Putting all this together, we can say: that The surprisal I of an event w-sub-n is the
log base 2 of 1 over the probability of w-sub-n. Since the logarithms of the fractions
are negative, with minus in front of the log of the resulting value becomes positive.



16.

17.

18.

19.

20.

21.

Marina Santini (2016)

03: Decision Trees -- Transcripts

And these are the formulas to compute entropy. The 2 formulas on the screen are
perfectly equivalent. The notation style is different but the content is identical. You
might notice that the minus of the surprisal formula which was placed in front of the
log, in the entropy formula it has been moved at the beginning of the expression. The
result of this expression will be positive, because, as we said the log of a fraction is
negative. Multiplication of 2 minus(es) gives a plus, i.e a positive number. How
surprising is an event? Informally, we can formulate this by saying: the lower
probability you assign to an event, the more surprising it is, so surprise seems to be
some kind of decreasing function of probability. If event 1 has a certain amount of
surprise, and event 2 has a certain amount of surprise, and you observe them
together, and they're independent, it's reasonable that the amount of surprise adds.
That’s why we have the big sigma in the lower formula. In the first formula we have
the juxtaposition of p-sub-1 up to p-sub-n. Entropy-based measures are commonly
used not only for deciding the best node, but for feature selection in general. And we
are going to use them shortly in weka.

Let’s make all this more concrete by giving an example. For the first branch of the
first tree, we take the number of yes and no classes at the leaf node: in the first
branch we have 2 yes and 3 nos. So we take the fraction/the proportion of the 2 yes
over the 5 instances on that branch and multiply by the log of the fraction; and we do
the same with the 3 no. On the screen you can see the calculation of the entropy of
the sunny branch of the tree that has been built with the outlook attribute. The level
of uncertainty is high, so the entropy value is high.

Watch out: There are many statements in the literature which say that information is
the same as entropy. Properly speaking: entropy is a probabilistic measure of
uncertainty or ignorance and information is a measure of a reduction in that
uncertainty. The information measure is a measure of purity and represents the
expected amount of information carried by a new instance. Entropy on the other
hand is a measure of impurity (the opposite). However, in our context, we use
entropy to (the quantity of uncertainty) to measure the purity of a node. If a node is
pure, entropy is close to 0: there is no uncertainty about making decisions. If a node
is impure, entropy will be higher because making decisions becomes expensive.

So we compute the information values of the individual branches of the outlook
attribute, and we sum them up. The overall information value of the attribute
outlook is 0.693. Try to compute the information values for the other attributes
yourselves.

Now in order to compute the information gain of an attribute with respect to the
other attributes, we have to compute the entropy of the training examples at the root
before any tree was created. At the beginning, before any split, we have 9 yes and 5
no, corresponding to an information value of 0.940. From 0.940, we subtract the
information value of the outlook branch and we get a value of 0.247. This value is the
gain, the information gain that we get if we create a branch on the outlook attribute.
We repeat the same procedure for all the attributes and we will find out that the
outlook attribute has the highest information gain. So it is the best root node for this
dataset. We continue the same process with all the other nodes until the data cannot
be split any further.

This is the end of the first video clip.



Marina Santini (2016)

03: Decision Trees -- Transcripts

Part 2b

1.

Welcome back to the second part of Lecture 4. In the previous video clip we
described how to select a node using information gain. In simple words, we could say
that information gain measures the amount of information load carried by an
attribute. We analysed how to compute information gain values, and calculations are
not too complicated if we understand the notions of surprisal and entropy. So far so
good. However, information gain has a practical drawback. More specifically, when
some attributes have a large number of possible values, a problem arises with the
information gain calculation. Let’s see what happens if we add an extra attribute, the
ID code, to our weather dataset.

Since the ID code identifies the instance, it determines the class without ambiguity.
Therefore the information gain of the ID code attribute is just the information at the
root, that is 0.940 bits. This value is greater than any other attribute, so ID code will
be chosen as the splitting attribute. But if we branch on the ID code, we cannot
predict the class of unknown instances. This attribute has no generalization power.
Basically information gain prefers attributes with a large number of possible values,
which is not always good.

Information gain is biased towards choosing attributes with a large number of
values. This may result in overfitting (the model learns too many specific elements
and is unable to generalize when predicting a new instance).

To compensate for this, a modification of the measure is usually adopted. This
variant is called Gain Ratio. GR takes into account the number and the sizes of nodes
into which an attribute splits the dataset, disregarding the information about the
class. If we neglect the class, we get the intrinsic information of a node. We divide the
information gain by the intrinsic information and we get the GR.

These are the GR values for the weather dataset without ID code. And you can see
that values can differ from the values computed using IG.

If we would add the ID code attribute, the GR for the outlook attribute would be
0.247 which would be still the highest, but much lower than the information gain
value of 0.940 bits. Problem with gain ratio: it may overcompensate May choose an
attribute just because its intrinsic information is very low Standard fix: only consider
attributes with greater than average information gain

The divide-and-conquer approach to decision tree induction is also called top-down
induction of decision trees. The scheme that has been described using the
information gain criterion is the one known as ID3; the use of GR was one of the
improvements made over the years. The creator of ID3 is Ross Quinlan. Additional
improvements were made to deal with missing values, noisy data, etc. and this
implementation is called C4.5. In weka we use J48 which is an open source Java
implementation of the C4.5 algorithm. There are other variants that have been
implemented, like CART, Cart means Classification And Regression Tree analysis and
is an umbrella term that covers both classification trees and regression trees. (Do
you remember the difference between classification and regression? We will see this
at quiz time) Basically decision trees tend to return similar results.

Let’ introduce the concept of pruning now. Fully expanded decision trees often
contain unnecessary structures and it is generally advisable to simplify them. Now it
is time to learn how to prune decision trees. There are two strategies: postpruning
and prepruning. By building the complete tree and pruning it afterward we are
adopting a strategy of postpruning (sometimes called backward pruning).
Prepruning would involve trying to decide during the tree-building process when to



Marina Santini (2016)

03: Decision Trees -- Transcripts

stop developing subtrees—quite an attractive prospect because that would avoid all
the work of developing subtrees only to throw them away afterward. However,
postpruning does seem to offer some advantages.

10. Most decision tree builders postprune. First, build full tree then, prune it. Fully-
grown tree shows all attribute interactions. Problem: some subtrees might be due to
chance effects. Two rather different operations have been considered for
postpruning: subtree replacement and subtree raising. At each node, a learning
scheme might decide whether it should perform subtree replacement, subtree
raising, or leave the subtree as it is, unpruned.

11. Subtree replacement is the primary pruning operation. The idea is to select some
subtrees and replace them with single leaves. For example, the whole subtree on the
LHS, involving two internal nodes and four leaf nodes, has been replaced by the
single leaf “bad” (RHS). When subtree replacement is implemented, it proceeds from
the leaves and works back up toward the root.

12. The other postpruning strategy, subtree raising, is more complex and
computationally expensive. Subtree raising is a potentially time-consuming
operation. In actual implementations it is generally restricted to raising the subtree
of the most popular branch. It is not always worth implementing it, but it is used in a
very influential building system tree like C4.5. It simple words, it proceeds by
deleting one node and redistributing the instances. If you look at the slide, you can
see that the node “C” has been “raised” to subsume node “B”. The daughters of the
raised node are marked with primes (the single quote next to the numbers) to
indicate that they are not the same as the original daughters 1, 2 and 3 but they also
include examples originally covered by node B.

13. Prepruning is based on statistical significance test (like chi-square). With
prepruning, the tree stops growing when there is no statistically significant
association between any attribute and the class at a particular node. We will explain
statistical significance in the next lectures.

14. It is possible to read a set of rules directly off a decision tree, by generating a rule for
each leaf and making a conjunction of all the tests encountered on the path from the
root to that leaf. This produces rules that are unambiguous and it does not matter in
which order they are executed. However, these rules are more complex than
necessary, and rules derived from trees are usually pruned to remove redundant
tests.

15.1t is more complicated to transform a set of rules into a tree because trees cannot
easily express the disjunction implied among the different rules in a set.

16. A good illustration of this problem occurs when the rules have the same structure
but different attributes like: if a and b then x and if c and d then x. In this case, it is
necessary to break the symmetry and choose a single test for the root node. If for ex
a is chosen, the second rule must be repeated twice in the tree, as shown in the tree
on the right hand side. And this is known as the replicated subtree problem.

17. We end the description of decision trees here. In this lecture we continued the
description of decision trees and talked about the following topics: attribute
selection, entropy, surprisal, information gain, gain ratio, pruning and rules. Now a
few simple quizzes. I tried to make these quizzes naively tricky, just to double check
that your attention is still with me ©

---the end -----



