Is machine learning based on probability?
- Yes – all machine learning is based on inductive inference
- No – we do not need an explicit probability model

Two roles for probability theory:
- Theoretical analysis of learning methods
- Practical use in learning methods

What do we get from probability theory?
- A principled framework for reasoning under uncertainty.
- Methods for
 - specifying assumptions we’re making
 - assessing the uncertainty of our predictions
Classification in a probabilistic framework

- Estimate a probability distribution over all possible outcomes given your features.
- Predict the class with the highest probability:

\[\hat{y} = \arg \max_y p(y|x) \]

Conditioning on features

![Probability Distribution](image1.png)

![Probability Distribution](image2.png)
Bayes optimal classifier

- If you know the distribution generating your data $p(x, y)$, classification is easy.
- The **Bayes optimal classifier** has optimal 0-1 loss of all possible classifiers.

$$f_{BO}(x) = \arg \max_y p(x, y)$$

- The Bayes optimal classifier gives a lower bound on the error rate.
- But usually we don’t know $p(x, y)$.
- Just counting training data will generalise very poorly!

Decomposing the joint probability

$$p(x, y) = p(y, x_1, \ldots, x_k)$$

$$= p(y) \prod_k p(x_k | y, x_1, \ldots, x_{k-1})$$

- This decomposition is valid for any distribution.
- But $p(x_k | y, x_1, \ldots, x_{k-1})$ is difficult to estimate reliably.

Naive Bayes assumption

- We can simplify the problem by making independence assumptions.
- Naive Bayes assumption: Features are conditionally independent given the labels.
- Example: If a review is positive, the occurrence of the word “amazing” is independent of the occurrence of “excellent”.
- This reduces the number of parameters and makes the model easier to estimate.
- We can then parametrise the component distributions.
Naive Bayes: Generative story

(for binary classification with binary labels)

- Select a label by drawing from a Bernoulli distribution.
 \[p_\theta(y) = \begin{cases}
 \theta_0 & \text{if } y = +1 \\
 1 - \theta_0 & \text{if } y = -1
 \end{cases} = \theta_0^{y=+1}(1 - \theta_0)^{y=-1} \]

- For each feature \(x_k \): Select a feature value from a Bernoulli distribution conditioned on the label \(y \).
 \[p_\theta(x_k | y) = \theta_0^{[x_k=1]}(1 - \theta_0)^{[x_k=0]} \]

Complete model

\[
p_\theta(x, y) = p_\theta(y, x_1, \ldots, x_k) \\
= p_\theta(y) \prod_k p_\theta(x_k | y, x_1, \ldots, x_{k-1}) \\
= p_\theta(y) \prod_k p_\theta(x_k | y) \\
= \theta_0^{y=+1}(1 - \theta_0)^{y=-1} \prod_k \theta_0^{[x_k=1]}(1 - \theta_0)^{[x_k=0]}
\]

To obtain the probability of the entire corpus, we multiply the probabilities of all examples:

\[
p_\theta(T) = \prod_{(x, y) \in T} p_\theta(x, y)
\]

How to train this?

- At training time, we want to find the best parameters for the training set.
- A standard way to do this is to maximise the likelihood of the training set.
- The likelihood is the probability as a function of the parameters.
- In the likelihood function, the parameters are regarded as variable and the data as fixed!
 \[
 \hat{\theta} = \arg \max_\theta L(\theta; T) = \arg \max_\theta p_\theta(T)
 \]
Notes on the optimisation

- We usually optimise the logarithm of the likelihood (log-likelihood) to turn products into sums.
- The parameters θ of our model are probabilities and must be between 0 and 1. This is a constrained optimisation problem.
- In this case, the resulting estimates are simple relative frequencies:
 \[
 \hat{\theta}_0 = \frac{1}{|T|} \sum_{(x,y) \in T} [y = +1], \quad \hat{\theta}_{y,k} = \frac{\sum_{(x,y^*) \in T} [y^* = y \land x_k = 1]}{\sum_{(x,y^*) \in T} [y^* = y]}
 \]
- The model has a linear decision boundary.

Generative and discriminative models

- Naive Bayes is a generative probabilistic model because it models the joint distribution of inputs and outputs, $p(x, y)$.
- An alternative approach is to model the conditional distribution, $p(y|x)$.
- This is sufficient for classification since the input is given whenever the classifier is queried.

Modelling the conditional distribution

- To create a discriminative classifier, we parametrise the distribution $p(y|x)$ directly.
- Define any suitable function that gives us a probability, then adjust the parameters by training.
A discriminative linear classifier

Let’s start with a linear classifier:

\[\hat{y} = w \cdot x + b \]

The margin \(\hat{y} \) is an indicator of the classification confidence.
But it can’t be used as a probability – its range is all of \(\mathbb{R} \).
What if we use some mapping \(g : \mathbb{R} \rightarrow (0, 1) \)?

Sigmoid transform

The logistic sigmoid function maps \(\mathbb{R} \) to \((0, 1)\):

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

It has many useful properties:
- As \(x \) becomes large, it quickly approaches 1.
- As \(x \) becomes small, it quickly approaches 0.
- It is symmetric: \(\sigma(-x) = 1 - \sigma(x) \).
- It has a nice derivative: \(\frac{d\sigma}{dx} = \sigma(x)(1 - \sigma(x)) \).

A discriminative linear classifier

\[
p(y|x) = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-w \cdot x - b)}
\]

\[
\sum_{(x,y) \in T} \log p(y|x) = \sum_{(x,y) \in T} \begin{cases}
\log \sigma(w \cdot x + b) & \text{if } y = 1 \\
\log(1 - \sigma(w \cdot x + b)) & \text{if } y = -1
\end{cases}
\]

\[
= \sum_{(x,y) \in T} \log \sigma(y(w \cdot x + b))
\]

\[
= \sum_{(x,y) \in T} \log \left(\frac{1}{1 + \exp(-y(w \cdot x + b))} \right)
\]

\[
= - \sum_{(x,y) \in T} \log (1 + \exp(-y(w \cdot x + b)))
\]
Logistic regression

- Maximising the log-likelihood of the sigmoid-transformed linear model is exactly equivalent to minimising the logistic loss function!
- This is called logistic regression.
- There is also a link to information theory: This classifier maximises entropy given a set of constraints.
- Logistic regression is the discriminative counterpart of Naive Bayes.

Maximum a posteriori (MAP) estimation

- Often, we have a prior notion of what our probability distributions should look like.
- Then we can use a maximum a posteriori (MAP) estimate:

\[
\hat{\theta} = \arg \max_{\theta} p(T|\theta)p(\theta)
\]

- Using a prior is often referred to as smoothing (or regularisation) because it smoothes the sharp MLE.
- The special case of a Gaussian prior on the weights results in ℓ_2 regularisation:

\[
p(\theta_k; \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)
\]

Generative vs. discriminative models

Generative models:
- Informative – other distributions can be derived:

\[
p(x) = \sum_y p(x, y) \quad \quad p(y|x) = \frac{p(x, y)}{\sum_y p(x, y)}
\]
- Can be used to generate data.
- May work with fewer data points.

Discriminative models:
- Only models the distribution relevant for classification.
- Less rigid independence assumptions.
- Often performs better given enough data.
Methods covered so far

- Decision trees
- k-nearest neighbours
- Perceptron
- Linear classifiers
 - Hinge loss
 - Logistic loss
 - Exponential loss
 - Squared loss
- ℓ_1 and ℓ_2 regularisation
- Naive Bayes, generative models

Choosing the right method

6 scenarios

Tools for classification

- General libraries:
 - Weka (GUI): https://www.cs.waikato.ac.nz/ml/weka/
 - scikit-learn (Python): http://scikit-learn.org/
- Nearest neighbours:
 - TiMBL: https://languagemachines.github.io/timbl/
- Linear classifiers:
 - libsvm: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
 - liblinear:
 https://www.csie.ntu.edu.tw/~cjlin/liblinear/
 - MegaM:
 https://www.umiacs.umd.edu/~hal/megam/version0_3/
Next up

- Next lecture (with Joakim): 26th April, 14–16 in 2-0024
- Assignment 2 due: 27th April