Machine Learning for NLP
Uppsala University
Department of Linguistics and Philology

About the Course
- Introduction to machine learning
- Focus on methods used in NLP
 - Decision trees and nearest neighbor methods
 - Linear models for classification and structured prediction
 - Ensemble methods
 - Unsupervised learning (clustering)
- Builds on Statistical Methods in NLP
 - Mostly discriminative methods
 - Generative probability models covered in first course

Reading List
- Main textbook:
 - Ethem Alpaydìn, Introduction to Machine Learning (2nd ed)
- Additional material:
 - Hal Daumé III, A Course in Machine Learning (draft)
 - Do not distribute chapters!
 - Do submit bug reports!
 - Papers on specific methods not covered in the book

Assignments and Examination
- Assignments:
 - Decision trees and nearest neighbor
 - Perceptron learning
 - Clustering
- Examination:
 - Written report submitted for each assignment
 - All three assignments necessary to pass the course
 - Grade determined by majority grade on assignments
Practical Organization
- Lectures in Adobe Connect:
 - Raise hand to ask questions
 - Recordings of lectures available on course home page
- Lecturers:
 - Joakim Nivre (1–4)
 - Oscar Täckström (5)
 - Magnus Rosell (6)
- Assignments:
 - No lab sessions, supervision by email
 - Reports submitted to joakim.nivre@lingfil.uu.se

Machine Learning
- Machine learning is programming computers to optimize a performance criterion for some task using example data or past experience
- Why learning?
 - No known exact method – speech recognition
 - Exact method too expensive – statistical physics
 - Task evolves over time – network routing
- Compare:
 - No need to use machine learning for computing payroll

Elements of Machine Learning
- Generalization:
 - Generalize from specific examples
 - Based on statistical inference
- Data:
 - Training data: specific examples to learn from
 - Test data: (new) specific examples to assess performance
- Models:
 - Theoretical assumptions about the task/domain
 - Parameters that can be inferred from data
- Algorithms:
 - Learning algorithm: infer model (parameters) from data
 - Inference algorithm: infer predictions from model
Types of Machine Learning

- Association
- Supervised Learning
 - Classification
 - Regression
- Unsupervised Learning
- Reinforcement Learning

Learning Associations

- Basket analysis:
 \[P(Y | X) \] probability that somebody who buys X also buys Y where X and Y are products/services

 Example: \(P(\text{chips} | \text{beer}) = 0.7 \)

Classification

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their income and savings

 Discriminant: IF income > \(\theta_1 \) AND savings > \(\theta_2 \)
 THEN low-risk ELSE high-risk

Classification in NLP

- Binary classification:
 - Spam filtering (spam vs. ham)
 - Spelling error detection (error vs. no error)

- Multiclass classification:
 - Text categorization (news, economy, culture, sport, ...)
 - Named entity classification (person, location, organization, ...)

- Structured prediction:
 - Part-of-speech tagging (classes = tag sequences)
 - Syntactic parsing (classes = parse trees)
Regression

- Example: Price of used car
- x: car attributes
 - y: price
 - $y = g(x | \theta)$
 - $g()$ model,
 - θ parameters

Uses of Supervised Learning

- Prediction of future cases:
 - Use the rule to predict the output for future inputs
- Knowledge extraction:
 - The rule is easy to understand
- Compression:
 - The rule is simpler than the data it explains
- Outlier detection:
 - Exceptions that are not covered by the rule, e.g., fraud

Unsupervised Learning

- Finding regularities in data
- No mapping to outputs
- Clustering:
 - Grouping similar instances
- Example applications:
 - Customer segmentation in CRM
 - Image compression: Color quantization
 - NLP: Unsupervised text categorization

Reinforcement Learning

- Learning a policy = sequence of outputs/actions
- No supervised output but delayed reward
- Example applications:
 - Game playing
 - Robot in a maze
 - NLP: Dialogue systems
Back to Classification

- Learning the class C of a “family car” from examples
- Prediction: Is car x a family car?
- Knowledge extraction: What do people expect from a family car?
- Output (labels): Positive (+) and negative (−) examples
- Input representation (features):
 x_1: price, x_2: engine power

Training set X

$X = \{x^t, r^t\}_{t=1}^N$

$r^t = \begin{cases}
1 & \text{if } x \text{ is positive} \\
0 & \text{if } x \text{ is negative}
\end{cases}$

Empirical (training) error

$E(h|X) = \sum_{t=1}^N \mathbb{1}[h(x^t) \neq r^t]$
S, G, and the Version Space

Most specific hypothesis, S
Most general hypothesis, G

\(h \in \mathcal{H} \), between S and G is consistent \(\{E(h \mid X) = 0\} \) and make up the version space.

Margin

- Choose \(h \) with largest margin

Noise

Unwanted anomaly in data
- Imprecision in input attributes
- Errors in labeling data points
- Hidden attributes (relative to \(\mathcal{H} \))

Consequence:
- No \(h \) in \(\mathcal{H} \) may be consistent!

Noise and Model Complexity

Arguments for simpler model
- Easier to make predictions
- Easier to train (fewer parameters)
- Easier to understand
- Generalizes better (if data is noisy)
Inductive Bias

- Learning is an ill-posed problem
 - Training data is never sufficient to find a unique solution
 - There are always infinitely many consistent hypotheses
- We need an inductive bias:
 - Assumptions that entail a unique \(h \) for a training set \(X \)
 - Hypothesis class \(\mathcal{H} \) – axis-aligned rectangles
 - Learning algorithm – find consistent hypothesis with max-margin
 - Hyperparameters – trade-off between training error and margin

Generalization

- Generalization – how well a model performs on new data
 - Overfitting: \(\mathcal{H} \) more complex than \(C \)
 - Underfitting: \(\mathcal{H} \) less complex than \(C \)
 - Trade-off between three factors:
 - Complexity of \(\mathcal{H} \), \(c(\mathcal{H}) \)
 - Training set size \(N \)
 - Generalization error \(E \) on new data
- Dependencies:
 - As \(N \uparrow \), \(E \downarrow \)
 - As \(c(\mathcal{H}) \uparrow \), first \(E \downarrow \) and then \(E \uparrow \)

Model Selection

- To estimate generalization error, we need data unseen during training:
 \[
 \hat{E} = E(h \mid \mathcal{V}) = \sum_{t=1}^{N} I(h(x') \neq r') \\
 \mathcal{V} = \{x', r'\}_{t=1}^{M} \neq X
 \]
- Given models (hypotheses) \(h_1, \ldots, h_k \) induced from the training set \(X \), we can use \(E(h_i \mid \mathcal{V}) \) to select the model \(h_i \) with the smallest generalization error

Model Assessment

- To estimate the generalization error of the best model \(h_i \), we need data unseen during training and model selection
- Standard setup:
 - Training set \(X \) (50–80%)
 - Validation (development) set \(\mathcal{V} \) (10–25%)
 - Test (publication) set \(\mathcal{T} \) (10–25%)
- Note:
 - Validation data can be added to training set before testing
 - Resampling methods can be used if data is limited
Cross-Validation

- **K-fold cross-validation**: Divide \(X \) into \(X_1, \ldots, X_K \)

\[
\begin{align*}
\mathcal{V}^1 &= X_1 \\
\mathcal{V}^2 &= X_1 \cup X_2 \\
&\vdots \\
\mathcal{V}^K &= X_K \cup X_1 \cup \cdots \cup X_{K-1}
\end{align*}
\]

- **Note**:
 - Generalization error estimated by means across \(K \) folds
 - Training sets for different folds share \(K-2 \) parts
 - Separate test set must be maintained for model assessment

Bootstrapping

- Generate new training sets of size \(N \) from \(X \) by random sampling with replacement
- Use original training set as validation set (\(\mathcal{V} = X \))
- Probability that we do not pick an instance after \(N \) draws

\[
\left(1 - \frac{1}{N}\right)^N = e^{-1} = 0.368
\]

that is, only 36.8% of instances are new!

Measuring Error

<table>
<thead>
<tr>
<th>True Class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>TP: True Positive</td>
</tr>
<tr>
<td>No</td>
<td>FP: False Positive</td>
</tr>
</tbody>
</table>

- Error rate = \# of errors / \# of instances = (FP+FN) / \(N \)
- Accuracy = \# of correct / \# of instances = (TP+TN) / \(N \)
- Recall = \# of found positives / \# of positives = TP / (TP+FN)
- Precision = \# of found positives / \# of found = TP / (TP+FP)

Statistical Inference

- Interval estimation to quantify the precision of our measurements

\[
m \pm 1.96 \frac{\sigma}{\sqrt{N}}
\]

- Hypothesis testing to assess whether differences between models are statistically significant

\[
\frac{(p_{11} - p_{01} - 1)^2}{\epsilon_{01} + \epsilon_{10}} \sim \chi^2
\]
Supervised Learning – Summary

- Training data + learner → hypothesis
- Learner incorporates inductive bias
- Test data + hypothesis → estimated generalization
- Test data must be unseen
- Next three lectures:
 - Different learners with different inductive biases

Anatomy of a Supervised Learner

- Model: \(g(x; \theta) \)
- Loss function: \(E(\theta | X) = \sum_{i} L(y_i, g(x_i; \theta)) \)
- Optimization procedure: \(\theta^* = \arg \min_{\theta} E(\theta | X) \)