Optimizing a Deterministic Dependency Parser
for Unrestricted Swedish Text

Joakim Nivre
Vixjo University
School of Mathematics and Systems Engineering
SE-35195 VAXJO

Joakim.Nivre@msi.vxu.se

Abstract

This paper explores the use of machine learning in optimizing a syntactic
parser for unrestricted Swedish text. The syntactic analysis is based on
dependency grammar and the original parsing algorithm deterministically
chooses the closest possible attachment for every word in the input string.
The goal of the optimization is that the parser should learn, from a train-
ing set of correctly analyzed sentences, when to postpone the attachment.
Experiments using a variant of k nearest neighbor learning show that a
small but significant improvement in precision can be achieved in this way.

1 Introduction

Syntactic parsing of unrestricted natural language text is a crucial task in large-
scale natural language processing systems such as machine translation systems.
In addition, it has a great potential for improving the quality of information
retrieval, information extraction and content management systems. Two major
obstacles to high-quality parsing of unrestricted text have traditionally been
the massive ambiguity inherent in natural language grammars and the lack of
robustness in parsing systems using these grammars.

Deterministic dependency parsing has recently been proposed as a robust
and efficient method for dealing with these problems and the results so far are
promising. Thus, Nivre and Nilsson [24] report both precision and recall above
80% for parsing unrestricted Swedish text with very simple grammar rules, using
a parsing algorithm that selects the closest possible attachment for every word in
the dependency graph. In order to improve the accuracy further, a more flexible
parsing strategy may be required, where the closest possible link is usually —
but not always — chosen. In this paper, I will investigate the possibility of using
machine learning techniques to determine when the parser should postpone the
attachment.

The paper is structured in the following way. In section 2, I introduce the
framework of deterministic dependency parsing proposed by Nivre and Nilsson
[24] and analyze the typical errors resulting from the closest-first strategy. In
section 3, I discuss the use of machine learning to improve parsing and in par-
ticular the choice of attributes to be used as input to the learning process. In

— Ml I W

PP NN VB PN JJ NN VB PM PM
Pa 60-talet malade han djirva tavlor som retade Nikita Chrusjtjov.
(In the-60’s painted he bold pictures which annoyed Nikita Chrustjev.)

Figure 1: Dependency graph for Swedish sentence

section 4, I present an experiment where a variant of k nearest neighbor learning
is used to achieve a small but significant improvement of precision. In section
5, I conclude with some suggestions for further research.

2 Deterministic Dependency Parsing

Dependency parsing is based on the old linguistic tradition of dependency gram-
mar, which comprises a large family of grammatical theories and formalisms that
share certain basic assumptions about syntactic structure, in particular the as-
sumption that syntactic structure consists of lexzical nodes linked by binary rela-
tions called dependencies (see, e.g., Tesniére [30], Sgall et al. [26], Mel'¢uk [22],
Hudson [20]). Thus, the common formal property of dependency structures, as
compared to the more common syntactic representations based on constituency
(or phrase structure), is the lack of phrasal nodes.

In a dependency structure, every lexical node is dependent on at most one
other lexical node, usually called its head or regent, which means that the struc-
ture can be represented as a directed graph, with nodes representing lexical
elements and edges representing dependency relations. Normally we also re-
quire that the graph is connected and acyclic, which means that it will in fact
be a rooted tree with the root node being the head of the sentence. Figure
1 shows a dependency graph for the Swedish sentence Pd 60-talet mdlade han
djdrva tavlor som retade Nikita Chrusjtjov, with the finite verb mdlade as the
root node. The label occurring above each word is its lexical category, or part
of speech; PP for preposition, NN for noun, VB for finite verb, etc.

Most formalizations of dependency grammar use rules that specify whole
configurations of dependents for a given head, using some notion of wvalence
frames (Hays [19], Gaifman [17], Carroll and Charniak [5], Sleator and Temper-
ley [27, 28], Barbero et al. [1], Eisner [16], Debusmann [14]). Nivre and Nilsson
[24] use a much weaker formalism, where only binary relations between heads
and dependents can be specified, using rules of the following form:

D+ H
H— D

These rules say that a word h of category H can be the syntactic head of a word
d of category D if d precedes («) or follows (—) h. Similar but not identical
grammar formalisms have previously been proposed by Covington [12, 13] and
Courtin and Genthial [11].

Nivre and Nilsson [24] consider three different parsing algorithms, which take
as input a grammar G and and a string of words wy, ..., w,, tagged with parts-
of-speech t1,...,t,, and builds a dependency graph by adding edges (w;,w;)
that are compatible with the rules of G. The algorithms are all deterministic
in the sense that once an edge has been added to the dependency graph it
can never be removed and will therefore block the addition of other possible
edges, given the constraint that each word can have at most one head. Given
that syntactic relations tend to be local, all three algorithms have a preference
for closer links over more distant ones. But they differ in the way that this
preference is balanced against other constraints.

When tested on a random sample of 142 sentences from the Stockholm-Umeé
Corpus of written Swedish (SUC [29]), manually annotated with the correct
dependency graph for each sentence, the best algorithm achieved a precision
of 85.5% and a recall of 83.9% on previously unseen data (Nivre and Nilsson
[24]). These results are comparable to the best results published for dependency
parsing of unrestricted texts, (see e.g. Eisner [15], Collins et al. [10]), although
there are no directly comparable results available for texts in Swedish.

The highest-scoring algorithm is the so-called projective algorithm, which
has the following overall structure:

for width k = 1ton—1do
for positioni =1 ton — k do
LINK(w;, wi4k)

The single parsing operation used is LINK(w;,w;), which tries to establish a
dependency link between two words w; and w;. Using the notation w : C to
mean that the word w belongs to the category C, and R € G to mean that R
is a rule of the current grammar G, this operation can be defined as follows:

if w; has no head
and w;: Dand wj: Hand D+ H € G
and w; and w; are accessible
and there is no path from w; to w;
then
add the edge (wj,w;)
else if w; has no head
and w; : Hand w; : Dand H - D € G
and w; and w; are accessible
and there is no path from w; to w;
then
add the edge (w;, w,)

A node wj is accessible iff there is no edge (w;,wy) such that i < j < k. The
effect of the accessibility constraint, in conjunction with the condition that there
be no path from dependent to head, guarantees that the resulting dependency
graph is acyclic and free from crossing edges, a property which is known as
projectivity in dependency grammar, hence the name of the algorithm.

The projective algorithm constructs a dependency graph by linking each
word to its closest possible regent proceeding left-to-right through the input
and observing the constraints on projectivity. More precisely, it runs through
the input words from left to right n — 1 times (where n is the number of words

in the input), considering possible links of length k during iteration k. The
number of iterations is therefore O(n?) but since the worst-case complexity of
the LINK operation is O(n), the running time of the algorithm is O(n?).

Precision and recall approaching 85% when parsing unrestricted text shows
that the preference for close links is a sensible overall strategy. At the same
time, it is a strategy that leads to error whenever the correct link is not the
closest possible one. Some of the errors performed by the parser are well-known
problems having to do with attachment ambiguity for prepositional phrases and
other adjuncts, which are known to be hard for any natural language parser.
Other errors seem to be more specific to the deterministic closest-first strategy,
and the way it interacts with the very simple form of grammars used. Errors in
the latter group fall mainly into three (partly overlapping) categories:

e Valence violations: Given the form of the grammar, there is no way to
impose restrictions on the number of dependents of a single head. Thus, in
the left hand example in Figure 2, the transitive verb iakttar is incorrectly
linked to three nominal dependents, which is one too many. Furthermore,
the incorrect link between iakttar and mur blocks the correct link from
mur to its prepositional head bakom.

e Linking across syntactic barriers: Despite the fact that most depend-
encies are local to the syntactic clause, there is nothing that prevents the
parser from adding links across clause boundaries. For example, in the
right hand sentence in Figure 2, the subjunction som is correctly determ-
ined to be the head of the finite verb oroar in the subordinate clause but
incorrectly analyzed as the head of the finite verb dr in the main clause.
Moreover, this incorrect link also blocks the correct link from the finite
verb dr to its subject saken because of the ban on cyclic graphs.

e Errors caused by elliptical constructions: Dependency grammar pre-
supposes that all syntactic constructions have a head, an assumption that
is barely satisfied if we limit ourselves to canonical syntactic structures.
However, in elliptical constructions it is often the case that the expected
syntactic head is omitted, which causes severe problems for the parser.
Cases in point are clauses without a finite verb and noun phrases without
a head noun, both of which are exemplified in the sentence Hon ldste den
tjocka boken och han den tunna med stor stil (She read the thick book and
he the thin [one] with large print).

Coping with errors in the third category probably requires major changes either
in the grammar or in the parsing algorithm (or both), and these problems may
even be best handled in a separate post-processing stage. Errors in the first two
categories, however, should be tractable by making the parser sensitive to the
number of dependents of a given head, and to the presence of clause boundaries
in the input string. In this paper, we will investigate the possibility of using
machine learning to achieve this goal.

Al T Il |

PP DT NN VB PN NN NN HP VB PN VB
Bakom en mur iakttar vi ugglan. Saken som oroar mig &r...)

(Behind a wall watch we the-owl.) (The-thing that worries me is ...)

Figure 2: Two typical parsing errors

3 Machine Learning

The goal of machine learning is to develop computer systems that improve their
performance with increased experience, i.e. systems that in some sense learn
from their experience. In the last ten to fifteen years, there has been a dramatic
increase in the use of machine learning techniques in different areas of natural
language processing. As far as syntactic parsing is concerned, machine learning
has mainly been used to discover rules for syntactic analysis, or to estimate
probabilistic parameters for such rules (see, e.g., Pereira and Schabes [25], Brill
[2], Charniak [6, 7], Collins [8, 9]), rather than to train syntactic parsers directly
(see, however, Briscoe and Carroll [4] and Magerman [21]).

In order to have a well-defined machine learning problem, me must specify a
task T to be performed, a measure P to assess the performance of the system at
T, and a type of learning experience E to be used to improve the performance
of the system (Mitchell [23]). In the current setting, T is the task of parsing
unrestricted Swedish text and P is the precision and recall achieved at this task
(measured against an empirical gold standard obtained by manual annotation).
The learning experience E will be the parser’s own performance on Swedish
text, compared to a manually annotated gold standard of the same kind that is
used in evaluation.

In order to have a complete learning system, we must also define the exact
type of knowledge to be learned, a representation of this target knowledge, and a
learning mechanism. We will postpone discussion of the learning mechanism and
concentrate first on the knowledge to be learned. This is often conceptualized
as a target function to be approximated, i.e. some function f : I — O, where
I is the space of possible inputs and O is the space of possible outputs, and
where the learnt approximation f : I — O can be used to improve the system’s
performance at the relevant task (cf. Mitchell [23], Hastie et al. [18]).

In the present context, we want the parser to improve its performance by
learning when a possible edge should be added to the dependency graph and
when it should be omitted in favor of a more distant link. Thus, it seems
reasonable to take our target function f to be a binary decision function, which
takes value 1 if a given edge should be added and value 0 if it should not be
added. The input to this function will be the state of the parser at decision
time. Thus, we can say that f: @ — {0,1}, where @ is the set of all possible
parser states.

In order to choose a representation of this function we must first decide what
aspects of parser states should be taken into account. Based on the analysis of
typical parser errors in the preceding section, we hypothesize that the following

properties of the parser state could be relevant for the decision of adding an
edge (w;,w;) or not:

1. The grammar rule licensing the edge, consisting of a head category H, a
dependent category D, and a direction d (where w; : H, w; : D and d is
either + or —).

2. The number of dependents of w; at decision time, possibly separated into
left and right dependents.

3. The presence of any clause boundaries or other syntactic barriers between
w; and wj.

The presence of other dependents of the potential head w; is relevant to avoid
valence violations, although the parser only has access to the dependents that
exist at decision time, which may not be the full set of dependents in the final
dependency graph. Similarly, syntactic barriers can only be detected with good
accuracy after the parsing is complete, which means that we have to rely on
indirect evidence from the presence of certain syntactic categories. Subjunctions
(SN), as well as interrogative and relative pronouns (HP) and adverbs (HA), are
fairly good indicators of clause boundaries. In addition, finite verbs (VB) may
be considered as clues in this context. Finally, the occurrence of words belonging
to the same category as w; or w; may be relevant as barriers in certain cases.

Based on these considerations, the following set of attributes were selected
to represent parser states:

Attribute Meaning

LCat Category of left word w;

RCat Category of right word w,

Dir Direction of dependency (+ or —)

Dist Distance between w; and w, (Dist = r — 1)

LDep Number of left dependents of potential head wy,
RDep Number of right dependents of potential head wy,
CB Number of HA, HP and SN between w; and w,
VB Number of VB between w; and w,

LBar Number of LCat between w; and w,

RBar Number of RCat between w; and w,

This means that training instances in the learning process will be represented as
pairs (X,Y’), where X is a list of values for the attributes listed above, and Y is
1 or 0 depending on whether the relevant edge is part of the correct dependency
graph or not.

For the experiment reported in the next section, a version of k-nearest neigh-
bor learning was used to approximate the target function f. Nearest neighbor
learning is a simple yet effective learning method, which has been applied suc-
cessfully to a variety of natural language processing problems. It therefore
seemed like a natural choice when starting to explore the potential of machine
learning for parser optimization.

Given a set of training instances T' = ({(1,%1),.. ., {(Tn,Yn)), the k-nearest
neighbor approximation is defined as follows (Mitchell [23], Hastie [18]):

1
kNN(x):E Z i
)

(lJ,jENk(:l)

where Ny (z) is the neighborhood defined by the k closest points z; in the train-
ing sample, according to a suitable distance measure. In order to turn this into
a discrete decision function, we use the following mapping;:

;v | 1 if ENN(z) > 0.5
f(z) = { 0 otherwise

The distance measure used is the Euclidean distance between the points in n-
dimensional space defined by the numerical attributes of each instance:

n

d(vi,vj) = | D (ar(v:) — ar(v;))?

r=1

where v; is the n-dimensional vector defined by the numerical attributes of x;
and a,(v) denotes the value of the rth attribute of vector v. In our case, the
numerical attributes are Dist, LDep, RDep, CB, FV, LBar, RBar, so n = 7.

4 Experiment

In order to test the viability of the machine learning approach to parser opti-
mization, an experiment was performed using data from the Stockholm-Umeé
Corpus of written Swedish (SUC [29]). SUC is annotated for parts of speech
(and manually corrected) and can therefore be used as direct input to the parser.
(Otherwise a part-of-speech tagger must be used to preprocess the input.)

Two independent data sets were sampled, each consisting of roughly 2000
words, corresponding to 115 and 142 sentences, respectively. Both samples were
manually annotated with dependency graphs by the author. The first data set
was used as training data, while the second data set was used for evaluation.
(Apart from the fact that a few annotation errors have been corrected, the two
data sets are identical to the ones used in Nivre and Nilsson [24].)

When annotating the sentences, major delimiters such as colon and semi-
colon were treated as barriers for dependency relations. This means that the
strings occurring on each side of such a delimiter were treated as separate parse
units even if they were not strictly speaking separate sentences. Moreover, text
occurring in parentheses was treated as invisible to the surrounding text, in the
sense that dependency relations were permitted across and within — but not into
or out of — the parenthesized text.

Tt is also worth mentioning some of the principles used in choosing between
alternative structural analyses for the annotation:

e Syntactic dependencies are preferred over semantic ones, meaning among
other things that:
1. Nouns depend on prepositions.
2. Finite verbs depend on subjunctions and fronted Wh-words.
3. Main verbs depend on auxiliary verbs.

e Coordinated items are treated as multiple dependents of their mutual head
(if any), while the coordinating conjunctions are left unattached.

e Multi-word proper names are treated as coordinated items.
e Nominal appositive constructions are consistently analyzed as left-headed.

The grammar used in the experiments was the grammar that achieved the
highest accuracy together with the projective parsing algorithm in Nivre and
Nilsson [24]. This grammar was constructed by iteratively removing low preci-
sion rules from an initial hand-crafted grammar G until no further improve-
ment was possible with respect to the training data set. The initial grammar
Gy contained a total of 139 rules, divided into 100 left-headed rules (of the form
H — D) and 39 right-headed rules (of the form D < H). The optimal gram-
mar (G125 was obtained after removing 12 rules, 9 left-headed and 3 right-headed,
yielding a total of 127 rules in the grammar.

The performance measures used were precision and recall, calculated per sen-
tence by comparing the dependency graphs built by the parser to the manually
annotated gold standard:

| Correct edges in parse |
| Edges in parse |

Precision =

| Correct edges in parse |
| Edges in gold standard |

Recall =

The overall precision and recall were then calculated as the mean precision and
recall over all sentences.

Training instances for the learning algorithm were created by running the
projective parsing algorithm with grammar Gi2 on the training data sample
from SUC. For each edge added by the parser, the ten input attributes were
computed and the output value was set to 1 if the edge was correct according
to the manually annotated gold standard and to 0 otherwise. In this way a
training data set of 1461 instances was created.

The projective parsing algorithm was modified so that an edge is added to
the dependency graph only if f(a:) = 1, where z is the current parser state,
as represented by the ten attribute values, and f is the k nearest neighbor
approximation defined in the preceding section, restricted to the set of instances
that agree with z in their values for LCat, RCat and Dir, i.e. parser states where
the same grammar rule is considered. This parser is called ANN in the following.
Different values for k& were tested, but the optimal value turned out to be k = 2
and this value was used throughout.

In the kNN parser, the presence of syntactic barriers, represented by positive
values for the attribute CB (and possibly VB), will only influence the parser’s
decision if the k nearest neighbors involving the same grammar rule also has
these barriers present. However, in many cases these barriers — unlike valence
constraints — are not limited to particular rules and categories but apply across
the board. Therefore, a second parser was constructed, where a nonzero value
for the CB attribute always blocks the addition of an edge, irrespective of the
k nearest neighbor value. In other words, this parser, called kKNN¢, uses the
following function approximation:

(@) = 0 if CB>1or kNN(z) <0.5
V=Y 1 otherwise

By letting a nonzero value for either the CB or the VB attribute act as a global
barrier, we obtained a third parser kNNcv. Finally, the original parser with

Parser | Precision | Recall
Baseline 85.3 82.9
kENN 85.9 83.1
kNNc¢ 86.1 83.3
kNNcv 86.7 82.9

Table 1: Precision and recall for four different parsers

the unmodified projective algorithm was included as a baseline. (Note that the
results obtained for the baseline parser differ by a small fraction from the ones
reported in Nivre and Nilsson [24]. This is due to the correction of a few errors
in the manually annotated gold standard.)

The precision and recall of the four parsers compared can be seen in Table
1. All three kNN parsers have a higher precision score than the baseline parser,
although the difference is statistically significant only for kNNc¢ and kNNcv
(paired t-test, @ = 0.05). For recall there are only minor differences between
the four parsers, none of which is significant.

The improvement in precision from 85.3% (baseline) to 86.7% (kNNcv) rep-
resents a 10% error reduction but is still not very impressive, and the interesting
question is why there is not a bigger improvement. One possible answer lies in
the sparseness of the training data. With a training set of 1461 instances and
a grammar containing 127 rules there are on average only about ten instances
per rule. Moreover, some of these rules occur very rarely, which means that
the training data for these rules will be sparse, with the effect that the nearest
neighbors may in fact be quite distant. The fact that k = 2 gave the best results
may be an indication that this is at least part of the answer, since a larger value
for k will bring even more distant neighbors into the picture.

A second possible explanation is the choice of attributes for representing the
target function. It is possible that another selection of features would lead to
a better approximation and a larger improvement of parsing accuracy. A third
possibility is the choice of learning mechanism, given that nearest neighbor
methods can be very sensitive to sparse data. (In the terminology of machine
learning they have low bias but high variance.) A fourth alternative is that we
are already close to the ceiling in terms of the parsing accuracy that can be
achieved with the simple projective algorithm and the very weak grammar rules
used so far. In this case, we may have to change either the form of the grammar
or the parsing algorithm, or both, in order to improve accuracy further.

5 Conclusion

In principle, the experiment reported in the previous section shows that it is
possible to use machine learning to improve the performance of a deterministic
dependency parser. In practice, this is of little interest as long as the improve-
ment is only marginal. More research is needed to determine whether this
approach is only of theoretical interest or whether it can lead to substantially
better parsing quality.

First of all, we need to increase the amount of training data available to
the learning algorithm in order to reduce the variance in the function approx-

imation. Regardless of what learning method we ultimately decide to use, the
generalization performance is bound to improve with more training data.

Secondly, we may need to modify the representation of the target function,
in particular the attributes representing the parser states. For example, we may
consider not only dependents of the potential head but also potential heads of
the dependent. That is, the decision to refrain from adding an edge (w;, w;) to
the dependency graph is likely to be influenced by the availability of alternative
regents for w;.

Thirdly, it may be worthwhile to experiment with different learning methods,
such as decision tree learning or Bayesian learning. Moreover, the choice of
learning method is not independent of the target function representation, since
learning methods differ in their sensitivity to the data sparseness that necessarily
comes with using a more complex representation of the target function.

Fourthly, we may have to make modifications to the grammar formalism or
even to the parsing algorithm itself. For instance, grammar rules could be made
context-sensitive by adding constraints on what syntactic categories may or may
not occur between the head and the dependent, or we might add constraints on
the number of dependents for a given head category as a crude way of capturing
valence constraints.

Finally, we may consider the possibility of using several passes over the input,
where later passes can detect and correct errors introduced in previous passes,
using methods such as transformation-based learning (Brill [3]).

Hopefully, carrying out this research program will lead to a substantial im-
provement in the quality of syntactic parsing for unrestricted natural language
texts, to the point where the full potential of this technique can be exploited
for the automated management of textual information, as suggested in the in-
troduction.

References

[1] Cristina Barbero, Leonardo Lesmo, Vincenzo Lombardo, and Paola Merlo.
Integration of syntactic and lexical information in a hierarchical depend-
ency grammar. In Sylvain Kahane and Alain Polguére, editors, Proceedings
of the Workshop on Processing of Dependency-Based Grammars, pages 58—
67, Université de Montréal, Quebec, Canada, August 1998.

[2] Eric Brill. Transformation-based error-driven parsing. In Proceedings Third
International Workshop on Parsing Technologies, 1993.

[3] Eric Brill. Transformation-based error-driven learning and natural lan-
guage processing: A case study in part-of-speech tagging. Computational
Linguistics, 21:543-566, 1995.

[4] Ted Briscoe and John Carroll. Generalised probabilistic Ir parsing of nat-
ural language (corpora) with unification-based grammars. Computational
Linguistics, 19:25-59, 1993.

[6] Glenn Carroll and Eugene Charniak. Two experiments on learning prob-
abilistic dependency grammars from corpora. Technical Report TR-92,
Department of Computer Science, Brown University, 1992.

10

[6]

(7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Eugene Charniak. Statistical parsing with a context-free grammar and
word statistics. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence. MIT Press, 1997.

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings
NAACL-2000, 2000.

Michael Collins. Three generative, lexicalised models for statistical pars-
ing. In Proceedings of the 35th Annatual Meeting of the Association for
Computational Linguistics, pages 16-23, Madrid, Spain, 1997.

Michael Collins. Head-Driven Statistical Models for Natural Language Pars-
ing. PhD thesis, University of Pennsylvania, 1999.

Michael Collins, Jan Haji¢, Eric Brill, Lance Ramshaw, and Christoph
Tillmann. A Statistical Parser of Czech. In Proceedings of 37th ACL Con-
ference, pages 505512, University of Maryland, College Park, USA, 1999.

Jacques Courtin and Damien Genthial. Parsing with dependency relations
and robust parsing. In Sylvain Kahane and Alain Polguére, editors, Pro-
ceedings of the Workshop on Processing of Dependency-Based Grammars,
pages 95-101, Université de Montréal, Quebec, Canada, August 1998.

Michael A. Covington. A dependency parser for variable-word-order lan-
guages. Technical Report AI-1990-01, University of Georgia, Athens, GA,
1990.

Michael A. Covington. Discontinuous dependency parsing of free and fixed
word order: Work in progress. Technical Report AI-1994-02, University of
Georgia, Athens, GA, 1994.

Ralph Debusmann. A declarative grammar formalism for dependency
grammar. Master’s thesis, Computational Linguistics, Universitit des Saar-
landes, November 2001.

Jason M. Eisner. An empirical comparison of probability models for de-
pendency grammar. Technical Report IRCS-96-11, Institute for Research
in Cognitive Science, University of Pennsylvania, 1996.

Jason M. Eisner. Bilexical grammars and their cubic-time parsing al-
gorithms. In Harry Bunt and Anton Nijholt, editors, Advances in Probab-
ilistic and Other Parsing Technologies. Kluwer, 2000.

Haim Gaifman. Dependency systems and phrase-structure systems. In-
formation and Control, 8:304-337, 1965.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning. Springer, 2001.

David G. Hays. Dependency theory: A formalism and some observations.

Language, 40:511-525, 1964.
Richard A. Hudson. English Word Grammar. Blackwell, 1990.

11

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

David M. Magerman. Statistical decision-tree models for parsing. In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational
Linguistics, pages 276-283, Boston, MA, 1995.

Tgor Mel’cuk. Dependency Syntax: Theory and Practice. State University
of New York Press, 1988.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

Joakim Nivre and Jens Nilsson. Three algorithms for deterministic depend-
ency parsing. Submitted to NODALIDA-2003, 2003.

Fernando. C. Pereira and Yves Schabes. Inside-outside reestimation from
partially bracketed corpora. In Proceedings of the 30th Annual Meeting of
the Association for Computational Linguistics, pages 128-135, 1992.

Petr Sgall, Eva Hajicova, and Jarmila Panevova. The Meaning of the Sen-
tence in Its Pragmatic Aspects. Reidel, 1986.

Daniel Sleator and Davy Temperley. Parsing English with a link grammar.
Technical Report CMU-CS-91-196, Carnegie Mellon University, Computer
Science, 1991.

Daniel Sleator and Davy Temperley. Parsing English with a link grammar.
In Third International Workshop on Parsing Technologies, 1993.

Stockholm Umeé Corpus. Version 1.0. Produced by Department of Lin-
guistics, Umea University and Department of Linguistics, Stockholm Uni-

versity. ISBN 91-7191-348-3., August 1997.

Lucien Tesniére. Eléments de syntaze structurale. Editions Klincksieck,

1959.

12

