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Abstract. This paper explores the idea that non-projective dependency
parsing can be conceived as the outcome of two interleaved processes,
one that sorts the words of a sentence into a canonical order, and one
that performs strictly projective dependency parsing on the sorted input.
Based on this idea, a parsing algorithm is constructed by combining
an online sorting algorithm with an arc-standard transition system for
projective dependency parsing.
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1 Introduction

In syntactic parsing of natural language, we analyze sentences by constructing
representations of their syntactic structure. Many different representations have
been proposed for this purpose, but in this paper we will restrict our attention to
dependency graphs. This form of representation, which comes out of a long tra-
dition of theoretical work in dependency grammar [1,2,3,4], has recently enjoyed
widespread interest in the computational linguistics community and have been
used for applications as diverse as information extraction [5], machine translation
[6], textual entailment [7], lexical ontology induction [8], and question answering
[9]. We attribute this increase in interest to the fact that dependency graphs pro-
vide a transparent encoding of predicate-argument structure, which is useful for
certain types of applications, together with the fact that they can be processed
both efficiently and accurately, in particular using data-driven models that are
induced from syntactically annotated corpora. Such models have recently been
applied to a wide range of languages in connection with the CoNLL shared tasks
on dependency parsing in 2006 and 2007 [10,11].

The dependency graph for a sentence is usually taken to be a directed tree,
with nodes corresponding to the words of the sentence and with labeled arcs rep-
resenting syntactic relations between words. For simplicity, it is often assumed
that the single root of this tree is an artificial word root prefixed to the sentence,
as illustrated in Figure 1. One issue that is often debated is whether dependency
graphs should also be assumed to be projective, that is, whether the yield of
every subtree should be a continuous substring of the sentence. The dependency
graph in Figure 1 fails to satisfy this condition, because the subtrees rooted at
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Fig. 1. Dependency graph for an English sentence (non-projective)

the words hearing and scheduled both have discontinuous yields (words 1, 2, 5, 6,
7 in the first case, words 4, 8 in the second). Most researchers today assume that,
although projectivity is appealing from a computational point of view, it is too
restrictive from a linguistic representational point of view, and most frameworks
therefore allow non-projective dependency graphs for representing discontinuous
linguistic constructions. This raises the question of how to parse such represen-
tations accurately and efficiently, given that most parsing algorithms proposed
for natural language are limited to the derivation of continuous structures.

Current approaches to non-projective dependency parsing typically take one
of two routes. Either they employ a non-standard parsing algorithm that is not
limited to the derivation of continuous substructures, or they try to recover non-
projective dependencies by post-processing the output of a strictly projective
parser. The most well-known example of the former approach is the application of
the Chu-Liu-Edmonds maximum spanning tree algorithm for directed graphs to
dependency parsing [12], although other algorithms also exist [13,14]. The second
approach is exemplified by pseudo-projective parsing [15], corrective modeling
[16], and approximate second-order spanning tree parsing [17]. In this paper, we
start exploring a third route, based on the idea that the parsing problem for
dependency graphs can be decomposed into a sorting problem, where the input
words need to be sorted into a canonical order, and a simpler parsing problem,
where the ordered input is mapped to a strictly projective dependency graph.

The rest of the paper is structured as follows. Section 2 reviews the transition-
based approach to projective dependency parsing, which is one of our building
blocks. Section 3 introduces the idea of sorting the input words to facilitate
parsing, defines the canonical sort order in terms of tree traversals, and presents
a transition-based sorting algorithm. Section 4 puts the two building blocks
together and presents an algorithm that simultaneously sorts the words in the
input and constructs a projective dependency graph for the sorted input, a graph
that may or may not be non-projective with respect to the original word order.
Section 5 concludes and makes suggestions for future research.

2 Projective Dependency Parsing

The transition-based approach to dependency parsing has two key components.
The first is a transition system for mapping sentences to dependency graphs;
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Fig. 2. Dependency graph for an English sentence (projective)

the second is a treebank-induced classifier for predicting the next transition for
arbitrary configurations of the parser [18]. We will focus here on the first compo-
nent and define a transition system that derives strictly projective dependency
graphs, using a bottom-up, arc-standard parsing strategy, which is essentially a
variant of the system described previously in [19,20,21]. But first of all, we need
to define the notion of a dependency graph a little more precisely.

Given a set L = {l1, . . . , l|L|} of dependency labels, a dependency graph for
a sentence S = w0w1 · · · wn (where w0 = root) is a labeled directed graph
G = (VS , A), where

1. VS = {0, 1, . . . , n} is a set of nodes;
2. A ⊆ VS × L × VS is a set of labeled directed arcs;

The set VS of nodes (or vertices) is the set of non-negative integers up to and
including n, each corresponding to the linear position of a word in the sentence
(including root). The set A of arcs (or directed edges) is a set of ordered triples
(i, l, j), where i and j are nodes and l is a dependency label. Since arcs are used
to represent dependency relations, we will say that i is the head and l is the
dependency type of j. Conversely, we say that j is a dependent of i.

For a dependency graph G = (VS , A) to be well-formed we in addition require
that it is a tree rooted at the node 0. This implies that there is a unique directed
path from the root node to every other node of the graph, and that every node
except the root has exactly one incoming arc. By contrast, we do not require
that G is projective with respect to the sentence S, i.e., that the yield of every
subtree of G forms a continuous substring of S (where the yield of a subtree is
the set of words corresponding to nodes in the subtree).

As already noted, the dependency graph depicted in Figure 1 is not projective,
since the subtrees rooted at nodes 2 and 4 do not have continuous yields. Note,
however, that projectivity is not a property of the dependency graph in isolation,
but only of the graph in combination with the word order of a sentence. Thus,
the dependency graph in Figure 2, while isomorphic to the graph in Figure 1, is
projective because the words of the sentence occur in a different order. We will
return to this observation in the next section, but first we will concentrate on
parsing sentences with strictly projective dependency graphs.

A transition system for dependency parsing consists of a set of configurations
and transitions between configurations. Given a sentence S = w0w1, · · ·wn, we
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Transition Condition

Left-Arcl ([σ|wi, wj ], β, A) ⇒ ([σ|wj ], β, A∪{(j, l, i)}) i �= 0

Right-Arcl ([σ|wi, wj ], β, A) ⇒ ([σ|wi], β, A∪{(i, l, j)})

Shift (σ, [wi|β], A) ⇒ ([σ|wi], β, A)

Fig. 3. Transitions for projective dependency parsing

take a configuration to be a triple c = (σ, β, A), where σ is a stack of words
wi ∈ S, β is a buffer of words wi ∈ S, and A is a set of labeled directed
arcs (i, l, j) ∈ VS × L × VS . When necessary, we use σc, βc and Ac to refer to
the different components of a configuration c, and we use Gc to refer to the
dependency graph G = (VS , Ac) defined by c. Both the stack and the buffer will
be represented as lists, although the stack will have its head (or top) to the right
for reasons of perspicuity. Thus, [σ|wi] represents a stack with top wi and tail σ,
while [wj |β] represents a buffer with head wj and tail β. We use square brackets
for enumerated lists, e.g., [1, 2, . . . , n], with [ ] for the empty list as a special case.

Given the notion of a parser configuration, we can now define a transition
to be a (partial) function from configurations to configurations. The following
set of transitions, defined more formally in Figure 3, are sufficient for projective
dependency parsing:

1. The transition Left-Arcl, parameterized for an arc label l ∈ L, updates a
parser configuration with words wi, wj on top of the stack by adding the arc
(j, l, i) to the arc set A and replacing wi, wj on the stack by wj alone. This
is a legal transition as long as wi �= root0.

2. The transition Right-Arcl, parameterized for an arc label l ∈ L, updates
a parser configuration with words wi, wj on top of the stack by adding the
arc (i, l, j) to the arc set A and replacing wi, wj on the stack by wi alone.

3. The transition Shift updates a parser configuration with the word wi as the
first word of the buffer by removing wi from the buffer and pushing it onto
the stack.

The transition system defined in Figure 3 is complete for the set of well-formed
projective dependency graphs in the sense that, for any sentence S = w0w1 · · · wn

with projective dependency graph G, there is a transition sequence (c0, c1, . . . , cm)
such that:

1. c0 = ([w0], [w1, . . . , wn], ∅)
2. ci+1 = ti(ci) for some transition ti (0 ≤ i < m)
3. Gcm = G

For example, the dependency graph for the sentence in Figure 2 is derived by the
transition sequence given in Figure 4. Ideally, the system should also be sound
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Transition Stack (σ) Buffer (β) New Arc
[r0] [A1, . . . , .9]

Shift [r0, A1] [hearing2, . . . , .9]
Shift [r0, A1, hearing2] [on3, . . . , .9]
LAdet [r0, hearing2] [on3, . . . , .9] (2,det, 1)
Shift [r0, hearing2, on3] [the4, . . . , .9]
Shift [r0, . . . , on3, the4] [issue5, . . . , .9]
Shift [r0, . . . , the4, issue5] [is6, . . . , .9]
LAdet [r0, . . . , on3, issue5] [is6, . . . , .9] (5,det, 4)
RApc [r0, hearing2, on3] [is6, . . . , .9] (3, pc, 5)
RAnmod [r0, hearing2] [is6, . . . , .9] (2,nmod, 3)
Shift [r0, hearing2, is6] [scheduled7, . . . , .9]
LAsbj [r0, is6] [scheduled7, . . . , .9] (6, sbj, 2)
Shift [r0, is6, scheduled7] [today8, .9]
Shift [r0, . . . , scheduled7, today8] [.9]
RAadv [r0, is6, scheduled7] [.9] (7,adv, 8)
RAvg [r0, is6] [.9] (6,vg, 7)
Shift [r0, is6, .9] [ ]
RAp [r0, is6] [ ] (6, p, 9)
RAroot [r0] [ ] (0,root, 6)

Fig. 4. Transition sequence for parsing the English sentence in Figure 2

with respect to the set of well-formed projective dependency graphs, in the
sense that every transition sequence derives a well-formed graph, which unfortu-
nately is not the case. However, every dependency graph derived by a transition
sequence is guaranteed to be a forest (set of trees), which means that it can
trivially be converted to a well-formed dependency graph by adding arcs from
the node 0 to all (other) root nodes.1

We define an oracle o to be a function from configurations to transitions such
that, for any sentence S with (projective) dependency graph G, if (c0, c1, . . . , cm)
is the transition sequence that derives G for S, then o(ci) = ti (for every i such
that 0 ≤ i < m). That is, for every configuration ci, the oracle returns the cor-
rect transition ti out of ci. Given an oracle, projective dependency parsing can be
performed deterministically using the following algorithm:

Parse(S = w0w1 · · · wn)

1 c ← ([w0], [w1, . . . , wn], ∅)
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t ∈ {Left-Arcl,Right-Arcl}
6 c ← t(c)
7 t ← o(c)
8 return Gc

1 For proofs of soundness and completeness for this transition system, see [20].
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The parser is initialized to the configuration c = ([w0], [w1, . . . , wn], ∅), where
the stack σc contains the artificial root word root, the buffer βc contains all the
real words of the sentence (in their linear order), and the arc set Ac is empty.
The outer while loop is executed as long as there are words remaining in the
buffer and starts by shifting the next word onto the stack after which it calls the
oracle. The inner while loop is executed as long as the oracle predicts a Left-

Arcl or Right-Arcl transition and simply updates the configuration using the
predicted transition and then calls the oracle again. After parsing is completed,
the dependency graph Gc defined by the final configuration c is returned.

It is not hard to show that this algorithm terminates after at most 2n transi-
tions, as it performs exactly n Shift transitions (one for each word initially in
the buffer) and can perform at most n other transitions (since both Left-Arcl

and Right-Arcl reduce the size of the stack by 1). This means that, if oracle
calls (lines 4 and 7) and transitions (lines 3 and 6) can be computed in constant
time, then the time complexity of the parsing algorithm is O(n) [20].

In order to build practical parsing systems, the oracle o has to be approxi-
mated by a classifier trained on data derived from a treebank. For every sentence
S with dependency graph G, we construct a set of training instances of the form
(ci, ti), where ci is a parser configuration and ti the correct transition out of ci

for the sentence. Training a classifier on such instances can be done using stan-
dard machine learning methods for discriminative classification, such as support
vector machines or memory-based learning [22,23], and transition-based parsing
using treebank-induced classifiers has been shown to give state-of-the-art pars-
ing accuracy in several experimental evaluations [10,11,24]. For the rest of this
paper, however, we will ignore the machine learning aspects and concentrate on
the construction of a parsing algorithm that is not limited to projective graphs.

3 Sorting to Projective Order

As noted in the preceding section, the projectivity constraint on dependency
graphs only holds in relation to a particular word order. And given a sentence
S = w0w1 · · · wn with (non-projective) dependency graph G, it is always possible
to find a permutation S′ of S such that G is a projective dependency graph for S′.
Moreover, since the graph structure remains the same, all the information about
the syntactic structure encoded in G is preserved in this permutation. To take
a concrete example, the sentence in Figure 1 can be permuted to the sentence
in Figure 2 in order to make the dependency graph projective. In this section,
we are going to explore the idea that this kind of permutation can be viewed as
a sorting problem, which can be solved using standard sorting algorithms, and
that this is a way of extending the transition-based dependency parsing method
described in the preceding section to non-projective dependency graphs.

Let S = w0w1 · · · wn be a sentence with dependency graph G = (VS , A).
We define the projective order of the words in S to be the order in which the
corresponding nodes in VS are visited in an inorder traversal of G starting at
the root node 0, where the local order on a node and its children is given by the
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Transition Condition

Swap (m, [σ|wi, wj |σm], β) ⇒ (m+1, [σ|wj , wi|σm], β) i �= 0

Shift (m, σ, [wi|β]) ⇒ (0, [σ|wi], β)

Fig. 5. Transitions for sorting into projective order

arithmetic order < on VS induced by the original word order. The basic idea
behind the notion of a projective order is to find a way to impose a linear order
on the nodes of the dependency graph in such a way that we guarantee that
every subtree has a continuous yield. This can be done in a variety of ways, but
because we want to preserve as much as possible of the original word order, we
choose an ordering that respects the original ordering of words corresponding to
nodes that stand in a parent-child or sibling relation. We can exemplify this by
returning to the sentence in Figure 1:

root0 A1 hearing2 is3 scheduled4 on5 the6 issue7 today8 .9

Given the dependency graph in Figure 1, the projective order of the words is the
following (which corresponds to the word order of the sentence in Figure 2):

root0 A1 hearing2 on5 the6 issue7 is3 scheduled4 today8 .9

We now want to explore the idea that (non-projective) dependency parsing can
be performed by sorting the words of a sentence into their projective order
and deriving a strictly projective dependency graphs for the sorted input. In
principle, we could use any one of the many algorithms that have been proposed
for sorting, but our desire to combine sorting with a transition-based approach
to parsing imposes certain constraints on the kind of algorithm that can be
used. First of all, it should be an online algorithm, so that we can start sorting
(and parsing) before having seen the end of the input, in an incremental left-to-
right fashion. Secondly, it should be an exchange sort, which sorts by exchanging
adjacent elements, so that sorting and parsing transitions can be defined on the
same kinds of configurations. One algorithm that satisfies these constraints is
gnome sort, which is similar to insertion sort, except that moving an element
to its proper place is accomplished by a series of swaps, as in bubble sort. The
worst-case time complexity of gnome sort is O(n2), but in practice the algorithm
can run as fast as insertion sort and is very efficient on nearly sorted lists. This
is an attractive property given that dependency graphs for natural language
sentences tend to be very nearly projective, which means that the projective
order will typically be close to the original word order [25,26].

In order to facilitate integration with the parser defined earlier, we first present
a transition-based version of gnome sort, where a configuration is a triple c =
(m, σ, β), consisting of an index m and two lists σ and β, and where we use the
two transitions defined in Figure 5. The idea is that the list β contains the list
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Transition m List (σ) Buffer (β)
0 [r0] [A1, . . . , .9]

Shift 0 [r0,A1] [hearing2, . . . , .9]
Shift 0 [r0, A1,hearing2] [is3, . . . , .9]
Shift 0 [r0, hearing2, is3] [scheduled4, . . . , .9]
Shift 0 [r0, . . . , is3, scheduled4] [on5, . . . , .9]
Shift 0 [r0, . . . , scheduled4,on5] [the6, . . . , .9]
Swap 1 [r0, . . . , is3,on5, scheduled4] [the6, . . . , .9]
Swap 2 [r0, hearing2,on5, is3, scheduled4] [the6, . . . , .9]
Shift 0 [r0, . . . , scheduled4, the6] [issue7, . . . , .9]
Swap 1 [r0, . . . , is3, the6, scheduled4] [issue7, . . . , .9]
Swap 2 [r0, . . . , on5, the6, is3, scheduled4] [issue7, . . . , .9]
Shift 0 [r0, . . . , scheduled4, issue7] [today8, .9]
Swap 1 [r0, . . . , is3, issue7, scheduled4] [today8, .9]
Swap 2 [r0, . . . , the6, issue7, is3, scheduled4] [today8, .9]
Shift 0 [r0, . . . , scheduled4, today8] [.9]
Shift 0 [r0, . . . , .9] [ ]

Fig. 6. Transition sequence for sorting the English sentence in Figure 1 (σ[m] in bold)

of remaining words to be sorted, while the list σ contains the words sorted so
far, with the index m referring to the position in σ of the word that is being
inserted into its proper place (with the first position having index 0). The two
transitions work as follows:

1. The Swap transition swaps the mth and m+1th words in σ and increments
the index to m+1 (the position of the word in mth position before the swap).

2. The Shift transition takes the next word from β, inserts it at the head of
σ and sets the index m to 0 (the position of the newly inserted word).

Note that we use the notation [σ|wi, wj |σm] to refer to a list (with its head to
the right) with a prefix of m words, followed by the words wi and wj and a tail
σ of unspecified length.

Assume now that we have an oracle o, which maps each configuration to the
correct transition (Swap or Shift) in order to sort the words of a sentence into
their projective order. Then sorting can be performed using an algorithm that
is very similar to the parsing algorithm described in the previous section:

Sort(S = w0w1 · · · wn)

1 c ← (0, [w0], [w1, · · · , wn])
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t = Swap

6 c ← t(c)
7 t ← o(c)
8 return σc
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Transition Condition

Swap (m, [σ|wi, wj |σm], β, A) ⇒ (m+1, [σ|wj , wi|σm], β, A) i �= 0

Left-Arcl (m, [σ|wi, wj |σm], β, A) ⇒ (m, [σ|wj |σm], β, A∪{(j, l, i)}) i �= 0

Right-Arcl (m, [σ|wi, wj |σm], β, A) ⇒ (m, [σ|wi|σm], β, A∪{(i, l, j)})

Shift (m, σ, [wi|β], A) ⇒ (0, [σ|wi], β, A)

Fig. 7. Transitions for integrated sorting and parsing

The outer while loop is executed once for each word to be inserted into its place
in the projective order, while the inner while loop is executed as many times as
the word needs to be swapped with its neighbor in order to reach its place. To
illustrate how this sort procedure works, Figure 6 shows the transition sequence
for sorting the words of the sentence in Figure 1 into their projective order.

4 Integrated Sorting and Parsing

In the two previous sections, we have shown how to perform projective depen-
dency parsing and how to sort the words of a sentence into their projective
order, in both cases relying on oracles for predicting the next transition, which
in practice can be approximated by classifiers trained on syntactically annotated
sentences. In this section, we will put the two pieces together and define an al-
gorithm that simultaneously sorts the words of a sentence into their projective
order and derives a projective dependency graph for the sorted input, which may
or may not be non-projective in relation to the original word order.

We let a configuration be a quadruple c = (m, σ, β, A), where m, σ, and β are
as in section 3, and where A is a set of dependency arcs as in section 2; we use
the transitions in Figure 7, where Swap and Shift are exactly as in section 3,
and where Left-Arcl and Right-Arcl have been modified to apply to the mth
and m+1th word in σ instead of the first and second; and we use the following
algorithm:

SortParse(S = w0w1 · · · wn)

1 c ← (0, [w0], [w1, . . . , wn], ∅)
2 while βc �= [ ]
3 Shift(c)
4 t ← o(c)
5 while t = Swap

6 c ← t(c)
7 t ← o(c)
8 while t ∈ {Left-arcl,Right-arcl}
9 c ← t(c)

10 t ← o(c)
11 return Gc
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Transition m List (σ) Buffer (β) New Arc
0 [r0] [A1, . . . , .9]

Shift 0 [r0,A1] [hearing2, . . . , .9]
Shift 0 [r0, A1, hearing2] [is3, . . . , .9]
LAdet 0 [r0,hearing2] [is3, . . . , .9] (2, det, 1)
Shift 0 [r0, hearing2, is3] [scheduled4, . . . , .9]
Shift 0 [r0, . . . , is3, scheduled4] [on5, . . . , .9]
Shift 0 [r0, . . . , scheduled4,on5] [the6, . . . , .9]
Swap 1 [r0, . . . , is3,on5, scheduled4] [the6, . . . , .9]
Swap 2 [r0, hearing2, on5, is3, scheduled4] [the6, . . . , .9]
Shift 0 [r0, . . . , scheduled4, the6] [issue7, . . . , .9]
Swap 1 [r0, . . . , is3, the6, scheduled4] [issue7, . . . , .9]
Swap 2 [r0, . . . , on5, the6, is3, scheduled4] [issue7, . . . , .9]
Shift 0 [r0, . . . , scheduled4, issue7] [today8, .9]
Swap 1 [r0, . . . , is3, issue7, scheduled4] [today8, .9]
Swap 2 [r0, . . . , the6, issue7, is3, scheduled4] [today8, .9]
LAdet 2 [r0, . . . , on5, issue7, is3, scheduled4] [today8, .9] (7, det, 6)
RApc 2 [r0, hearing2, on5, is3, scheduled4] [today8, .9] (5, pc, 7)
RAnmod 2 [r0,hearing2, is3, scheduled4] [today8, . . . , .9] (2, nmod, 5)
Shift 0 [r0, . . . , scheduled4, today8] [.9]
RAadv 0 [r0, . . . , is3, scheduled4] [.9] (4, adv, 8)
RAvg 0 [r0, hearing2, is3] [.9] (3, vg, 4)
LAsbj 0 [r0, is3] [.9] (3, sbj, 2)
Shift 0 [r0, is3, .9] [ ]
RAp 0 [r0, is3] [ ] (3, p, 9)
RAroot 0 [r0] [ ] (0, root, 3)

Fig. 8. Transition sequence for parsing the English sentence in Figure 1 (σ[m] in bold)

As before, the outer while loop is executed once for each word wi (1 ≤ i ≤ n),
which is inserted at the head of the list σ. The first inner while loop in-
serts wi in its proper place, by performing the required number of Swap tran-
sitions, and the second inner while loop adds the required number of arcs
before the next word is shifted to σ. The parsing procedure is exemplified
in Figure 8, which shows the transition sequence for parsing the sentence in
Figure 1.

Provided that oracle predictions and transitions can both be performed in
constant time,2 the time complexity of the algorithm is O(n2) in the worst
case but O(n) in the best case where the input words are already sorted in the
projective order. Since dependency graphs for natural language sentences tend
to be very nearly projective, the algorithm can therefore be expected to be very
efficient in practice.

2 The time taken to compute the oracle prediction depends heavily on the time of
classifier used but does not in general depend on the length of the input sentence.
It can therefore be regarded as a constant in this context, corresponding to the
grammar constant in grammar-based approaches to parsing.
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5 Conclusion

In this paper, we have explored the idea that the general parsing problem for
dependency graphs can be decomposed into a sorting problem and a simpler
parsing problem restricted to projective dependency graphs. Based on this idea,
we have constructed a parsing algorithm for non-projective dependency graphs
by combining an online sorting algorithm with a projective parsing algorithm.
The next important step in the exploration of this approach is to develop a
practical parsing system by training classifiers to approximate the oracle used to
predict the next transition. This methodology has previously proven successful
for strictly projective dependency parsing, but it is an open question how well
it will perform for the more complex problem of integrated sorting and parsing.
Finally, it is worth emphasizing that the projective order and sorting algorithm
proposed in this paper only define one of many conceivable realizations of the
basic idea of integrated sorting and parsing. Exploring alternative orders and
sorting strategies is another important area for future research.
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