
Variable Insertion and
Search in a Translation
Memory

Jakob Berndtsson

Uppsala University
Department of Linguistics and Philology
Språkteknologiprogrammet
(Language Technology Programme)
Bachelor’s Thesis in Language Technology, 15 credits

25th August 2015

Supervisors:
Christian Hardmeier, Uppsala University
Sebastian Schleussner, Convertus AB
Aaron Smith, Convertus AB

Abstract

Translation memories are tools that save and re-use translated text for
translators and machine translation systems. This thesis investigates how
a translation memory can be improved by implementing variables in it.
Eight different variable types divided in three categories are successfully
implemented, and through tests their usefulness is shown. Half of the
variable types are found in many places in the training data of the tests
and are therefore considered useful. The other half is rarer in the training
data, but is in most cases considered potentially useful.

To test the implementation, the translation memory is used as a part
of a machine translation system, and using a smaller course syllabus corpus
and a subset of the JRC-Acquis corpus, it is shown that the introduction
of variables improves the translation quality. How big the improvement
is depends on several factors, with the biggest one being the number
of segments having been inserted in the translation memory prior to
translation.

Sammandrag

Översättningsminnen är verktyg som sparar och återanvänder text för
översättare och översättningssystem. Den här uppsatsen undersöker hur
ett översättningsminne kan förbättras genom att implementera variabler
i det. Åtta olika variabeltyper uppdelade i tre kategorier implementeras
framgångsrikt, och genom tester visas det hur de användbara de är. Hälften
av variabeltyperna hittas på många ställen i träningsdatan av testerna och
anses därför vara användbara. Resten är ovanligare i träningsdatan, men är
i de flesta fall potentiellt användbara.

För att testa implementationen används översättningsminnet som en
del av ett maskinöversättningssystem, och med hjälp av en mindre kurs-
planskorpus och en delmängd av JRC-Acquis-korpusen visas det hur
introduktionen av variabler förbättrar översättningskvaliteten. Hur stor
förbättringen är beror på flera faktorer, där den största är antalet segment
som har lagts in i översättningsminnet innan översättningen sker.

Contents

Acknowledgements 4

1 Introduction 5
1.1 Purpose . 5
1.2 Outline . 6

2 Background 7
2.1 Translation Memory . 7

2.1.1 Full matches and variables 8
2.1.2 Fuzzy matches . 9
2.1.3 Translation Memories in Machine Translation 9

2.2 Convertus Syllabus Translator 10

3 Implementation 12
3.1 Variables . 12

3.1.1 Absolute variables . 13
3.1.2 Localizable variables . 14
3.1.3 Lexicalizable variables 14

3.2 Insertion . 15
3.3 Search . 17

3.3.1 Placeholder insertion . 17
3.3.2 Element insertion . 19

3.4 XML entities . 19

4 Experiments 21
4.1 Corpora . 21
4.2 Testing procedure . 22
4.3 Results . 23

5 Discussion 26
5.1 Variable types . 26
5.2 Differences between the two systems 27
5.3 Implementing fuzzy matching 29

6 Conclusion 30

Bibliography 31

A Output differences 32

3

Acknowledgements

I would like to thank my supervisors, Christian Hardmeier at Uppsala University
and Sebastian Schleussner and Aaron Smith at Convertus AB, along with Anna
Sågvall Hein at Convertus AB, for helpful feedback and suggestions, both for
the writing and the implementation process. I would also like to thank Lina
Stadell at Convertus AB, for general help and suggestions during my time at the
company. Finally, I would want to thank Monika Hawrylak for proof-reading,
encouraging words and massive support during the entire time of the project.

4

1 Introduction

Imagine a situation where a translator is manually translating a number of
documents, each very similar to the other. The translator can then translate
every single segment, even if it is identical to a segment already translated.
However, this is not a very effective workflow, and in addition it can also lead
to unnecessary work for the translator. To make the workflow more effective,
the translator could simply manually copy translated segments from an old
document to the new one. This might make the workflow a little more effective,
but not by much. To streamline the process, maybe it would be good to try to
automate the process?

Enter translation memories. A translation memory makes a translator’s
life easier by saving everything that has been translated, and then re-using
translations whenever a segment identical to a saved segment shows up for
translation. This can be of great help, but it is still somewhat limited, since the
re-use of the translation only happens if the segment up for translation and the
saved segment are identical. It could be meaningful to use this approach even if
e.g. a single digit is the only thing differing between two segments.

There are some different techniques for re-using text even when segments
are not fully identical. One of the techniques is to use variables in the translation
memory. Variables are elements like numbers, email addresses, dates or anything
that can be replaced with another element of the same type. With variables,
segments still need to be identical, but with variable placeholders in the place
of elements, segments up for translation can more often be considered identical
with the saved segments, and the saved segments can therefore be re-used more
often.

Translation memories can be useful not only for human translators, but also
for machine translation systems. If a machine translation system translates a
text, the post-edited correctly translated segments can be saved to the transla-
tion memory, for later re-use. Since a translation memory therefore helps the
machine translation system to find correct approved translations, the quality of
the translation can benefit from the use of a translation memory.

1.1 Purpose
The purpose of this thesis is to introduce insertions and searches of variables in
a translation memory as part of a machine translation system and examine how
this affects the translation quality. While previous research has shown that the
introduction of similar techniques in a machine translation system improves
its translation quality, there seems to be little research in how specifically the

5

introduction of variables affects the quality.
This is a gap that I am hoping to fill with this thesis. Unlike other relatively

technically complex techniques that requires modifications in many different
steps in the machine translation workflow, full matching offers a relatively easy
solution that can be implemented by only modifying an existing translation
memory.

The translation memory used is part of a rule-based machine translation
system developed and utilized by the Uppsala-based language technology com-
pany Convertus AB. Although the translation memory can be used for other
applications as well, the main application for my development and testing is the
Convertus Syllabus Translator, which specializes in translating course syllabi,
mainly from Swedish to English.

1.2 Outline
Chapter 2 introduces the concept of translation memories, explains how they
can be integrated in machine translation systems, and gives a brief overview of
the Convertus Syllabus Translator. Chapter 3 presents eight different variable
types and describes how the variables were implemented by adding search
and insertion functions to the translation memory of the Convertus Syllabus
Translator. In chapter 4, several experiments are performed to test how the
introduction of variables to a translation memory affects the translation quality.
In chapter 5, the test results are the basis of a discussion of the usefulness of the
different variable types and the improvements that come from implementing
the variables in the translation memory. Finally, chapter 6 concludes the thesis.

6

2 Background

2.1 Translation Memory
A Translation Memory (TM) is a database commonly used as an aid for human
translators, but can similarly also be used as an aid for machine translation. The
database contains already translated source–target segment pairs, which are
re-used whenever an identical source segment appears for translation. A TM
generally has two parts; insertion and search. Insertions are made when source
segments have been translated and the translations have been approved by the
user. The pairs of source and target segments then get inserted and stored into
the TM. The search is made when a new source segment is being translated.
If the new segment matches (i.e., is similar enough to) the source of one of
the segment pairs in the TM, the new segment automatically gets translated to
the target of the same segment pair in the TM. When first used, the TM will
naturally be empty, and no matches will be found. However, with time more
and more segment pairs are stored, and the potential usefulness of the TM
increases. In general, a TM can be a helpful tool for translators, given certain
types of text. For example, legal and scientific texts are types of text where the
translator might benefit from a TM system, due to the repetitive nature of the
texts, while the translation of less repetitive texts, like literary texts, benefits
less from it (Gow 2003, p. 14).

Gow (2003, pp. 23–24) specifies three types of matches for TM:

• Perfect matches: source segment and TM source segment are identical.

• Full matches: source segment and TM source segment are identical, ex-
cept for some variable elements.

• Fuzzy matches: source segment and TM source segment are similar
enough (according to some similarity metric).

The concept of perfect matches is as trivial as finding out if two text strings are
identical, and one might argue that it is enough. However, if one considers the
segments in the following example:

(1) The course in machine translation starts 19 January.
The course in machine translation starts 31 August.

The segments in example 1 are not identical, thus they are not a perfect match.
They are however similar in that they convey almost identical information,
with the date being the only difference, and the similarity can be of use for the
translator (or machine translation system). To make them match and increase

7

the recall of the TM, one of the two techniques full and fuzzy matching
(explained in sections 2.1.1 and 2.1.2, respectively) can be implemented.

2.1.1 Full matches and variables

To avoid situations in which only source segments completely identical to the
TM segment are matched, one could implement full matching, which means
that variables (sometimes called placeables or placeable elements) are used to
match segments that are not completely identical. A variable is an element that
is replaceable by another, similar element. One common way to do this is to
replace the element with some kind of placeholder in the TM (Azzano 2012,
p. 13), and then replace the placeholder with another element of the same type.

For example, if the variables in question are numbers and month names and
the English to Swedish segment pair

(2) The course in machine translation starts 19 January.
Kursen i maskinöversättning startar 19 januari.

is inserted into the TM, it is saved as

(3) The course in machine translation starts NUM MONTH.
Kursen i maskinöversättning startar NUM MONTH.

where NUM and MONTH are placeholders for a number and a month, respectively.
If the segment

(4) The course in machine translation starts 31 August.

later shows up for translation, the TM would find a match for the segment
in example 3, and the correct translation (Kursen i maskinöversättning startar
31 augusti.) can be given without passing through the hands of a translator or
machine translation system.

In his PhD thesis, Azzano (2012, p. 38) specifies two different categories
of variables, namely absolute and localizable variables (or in his terminology,
placeable and localizable elements, respectively). Absolute variables refer to
elements that are directly transferred from source to target segment, such as
URLs and E-mail addresses. Localizable variables refer to elements that are
transferred from source to target via a specified locale. This could be applied
to numbers (where decimal and thousands separators can vary for different
languages) and dates, and an example of the latter would be, from Swedish
(ISO 8601) to British English:

(5) 2015-03-09
09/03/2015

In this thesis, a third category of variables, lexicalizable variables, is introduced.
These variables are words and phrases that like the variables in the other
categories act as variable elements. However, the way they are translated is
through a lexicon (hence the term lexicalizable). Examples of possible lexical-
izable variable types are names of months, and other proper nouns that need
translation.

8

2.1.2 Fuzzy matches

In order to accommodate minor changes to documents to be translated, one
might implement full matching in the TM, as is mentioned in section 2.1.1.
Another way is to introduce fuzzy matching. With fuzzy matching, segments
that are similar but not identical will match each other. For example, if the
following source segment is in a TM:

(6) The course in machine translation starts 19 January.

and the source segment

(7) The course in machine translation starts 31 August.

shows up during translation, it could be matched by the segment from ex-
ample 6, if the similarity between the two segments is large enough. If the
segments match, both the TM and translator or MT system are used to translate
the segment up for translation.

In modern applications, the similarity is most often measured by using the
Levenshtein distance (Azzano 2012, pp. 16–17), which counts the number of
substitutions, deletions and insertions needed to change one word to another.
The character-based Levenshtein distance between examples 6 and 7 would
then be 8, and the word-based distance would be 2. Using a definition from
Koehn and Senellart (2010) where the Levenshtein distance is divided by the
maximized number of characters or words (46 not counting whitespace and 8,
respectively for the examples above) and the resulting quotient is subtracted
from 1, examples 6 and 7 would get a similarity score (or fuzzy match score) of
approximately 83 % using character-based distance and 75 % using word-based
distance.

A fuzzy match is a pair of segments with a similarity score theoretically
anywhere higher than 0 % and lower than 100 %. However, to avoid noise and
mismatched segments, a threshold is usually set. As an example, the default
threshold of the popular TM software SDL Trados Studio is set to 70 %.1

Using that default value and the similarity score definition mentioned in the
previous paragraph, examples 6 and 7 would be considered a match, no matter
if character-based or word-based Levenshtein distance was used.

For the parts of the two matched source segments that are identical, the
target is taken directly from the target segment of the segment pair in the TM.
In examples 6 and 7, this would mean that The course in machine translation
starts is taken directly from the TM. The parts in the segment that do not match
(31 August in the examples above) are instead given to the translator or MT
system to translate. To know which part of the target segment from the TM that
needs to be exchanged by the part translated by the translator or MT system,
some kind of word alignment needs to be applied as well.

2.1.3 Translation Memories in Machine Translation

TM and machine translation (MT) have long been separated techniques, partly
because of differing translation challenges:

1http://producthelp.sdl.com/SDL%20Trados%20Studio/client_en/Edit_View/TMs/
EVWorkingwithTMsAbout_Translation_Memory_Matches.htm

9

http://producthelp.sdl.com/SDL%20Trados%20Studio/client_en/Edit_View/TMs/EVWorkingwithTMsAbout_Translation_Memory_Matches.htm
http://producthelp.sdl.com/SDL%20Trados%20Studio/client_en/Edit_View/TMs/EVWorkingwithTMsAbout_Translation_Memory_Matches.htm

While TM have addressed the need of translation agencies to pro-
duce high-quality translations of often repetitive material, [MT] has
set itself the challenge of open domain translations such as news
stories and is mostly satisfied with translation quality that is good
enough for gisting, i.e., transmitting the meaning of the source text
to a target language speaker. (Koehn and Senellart 2010)

However, in later years, translation agencies have started to look at the integra-
tion of MT into their translation workflow, as a way of making the translation
process more effective.

In several papers (e.g. Koehn and Senellart 2010; Zhechev and van Genabith
2010) it has been shown that the integration of TM into an MT system can
be beneficial to the performance of the system. Unlike the full matching used
in this thesis, those works use fuzzy matching in the TM, and with similarity
scores 80 % or higher, MT with integrated TM outperforms pure MT. Koehn
and Senellart (2010) and Zhechev and van Genabith (2010) both utilize a
pipelined approach similar to the one described in section 2.1.2. A more
advanced method, with the TM matching integrated into the MT decoder is
implemented by Wang et al. (2013), outperforming Koehn and Senellart (2010)
at all fuzzy match intervals.

2.2 Convertus Syllabus Translator
The Convertus Syllabus Translator (CST) is a rule-based machine translation
system with statistical fallback functionality. It is based on the MATS system,
developed at the Department of Linguistics at Uppsala University (Sågvall
Hein et al. 2003). MATS was developed as a pure rule-based system, but was
later extended with the mentioned statistical fallback (Weijnitz et al. 2004).
With the foundation of Convertus AB, MATS was further developed as CST,
specialized in translating course syllabi, and became available for public use in
2007 (Pettersson 2010).

The workflow, illustrated in figure 2.1, starts with segmentation of the
source text, which divides the text into sentences, headlines, list items, and so
on. Next, each segment is passed to the TM. If a match is found, the translated
segment is retrieved from the TM and sent directly to the reconstruction step,
where all the translated segments are combined to form the full target text.
If no TM match is found, the segment is translated by the MT system, and
the target segment is automatically post-edited and sent to the reconstruction
step. When all source segments have been translated (using either TM or MT)
and combined, the full target text is sent to manual post-editing, where the
segments are corrected by a human translator. After all corrections have been
made and the translated text has been approved, all the source and target
segment pairs are inserted into the TM, and the finished translated text is
delivered to the user.

10

Source text

Segmentation

Translation
Memory

Reconstruction Machine
Translation

Match
found?

Manual
post-editing

Target text

yes no

Insertion

Figure 2.1: A simplified flow chart of the Convertus Syllabus Translator’s work flow

11

3 Implementation

Before the implementation of full matching, the TM of CST could only handle
perfect matches, which limits the usefulness of the TM (see section 2.1). To
extend the system’s functionality, I introduce and implement full matching and
eight different types of variables.

At the time of writing this thesis, the languages currently supported by
CST are Swedish and English, in both directions. For this reason, and because
Swedish and English are the two languages I have the most knowledge of, they
are the two languages that the full matching is implemented for. However, there
is still some functionality for other languages.1

Technically, both variable insertion and search make extensive use of regular
expressions. These, along with the development in general, are implemented
using Perl, which often is considered unparalleled when it comes to pattern-
matching in text (O’Reilly and Smith 1998). The database used for the TM is a
MySQL system, which is linked to the Perl modules with the help of the Perl
Database Interface (DBI).

3.1 Variables
For both insertion and search, variables are added by replacing the element
with a placeholder. The placeholders are in the format <VARn/>, where VAR
is the variable type, and n is an identifying number for the variable. The first
element of a certain type is given the number 0, the second 1, and so on. For
example, with number and month variables, the following segment

(8) 19 January 2015

will after having the elements replaced by placeholders look like

(9) <NUM0/> <MONTH0/> <NUM1/>

My philosophy when defining and implementing the variables is to make
sure that as many correct additions of variables as possible are made, but to
give priority to precision over recall (i.e., to prefer elements incorrectly not
recognized as variables to elements incorrectly recognized as variables). The
reason for this is that unlike elements incorrectly not recognized as variables,
elements incorrectly recognized as variables can produce incorrect translations.
For example, consider the following Swedish-to-English segment pair being
inserted into the TM:

1The functionality is however limited to languages using the Latin alphabet.

12

(10) Får jag åka i maj?
May I leave in May?

If month variables are incorrectly applied during the insertion into the TM, the
segment pair could be stored as

(11) Får jag åka i <MONTH0/>?
<MONTH0/> I leave in May?

When the new segment Får jag åka i juli? is sent through the TM for translation,
it will be matched by the source segment in example 11 and produce the incor-
rect target segment July I leave in May?. In comparison, elements incorrectly
not recognized as variables can not do this kind of damage: they can only lessen
the amount of segments matched by segments in the TM.

For translating the variable elements from source to target language, the
same method is used in both insertion and search. However, the method differs
between the three different categories of variables. Along with the descriptions
of the different variable types of each category, the translation methods for the
absolute, localizable and lexicalizable variables are described in sections 3.1.1,
3.1.2 and 3.1.3, respectively.

3.1.1 Absolute variables

Absolute variables are the simplest types of variables, as the values they contain
are exactly the same in source and target segments. Thanks to this, no specific
language format needs to be used, and the variables can be used in any language,
known or unknown.

There are four absolute variable types implemented for this thesis; URLs,
email addresses, codes and punctuation.

• URLs and email addresses
The regular expressions used for URLs and email addresses are inspired by
the ones presented by Azzano (2012, pp. 149–150 and 154–155). They
are both defined with the possibility of letting invalid addresses through.
For example, with the URL variable type, an element like www.p will be
accepted as a valid URL. Since the task is to recognize all valid URLs and
email addresses, recall is given a higher priority than with other variable
types. Since URLs and email addresses have very specific formats, it is
assumed that false placeholder insertions (i.e., insertions of URL or email
address placeholders in place of non-URL or email address elements) are
highly unlikely, and therefore it is more important to have a more tolerant
definition that matches all elements, than having a strict definition that
might miss some elements.

• Codes
Codes are defined as an uppercase letter, preceded and followed by zero
or more uppercase letters, numbers and dashes. The main motivation
behind this variable type is to pick up course codes, but it can also be
used for all other codes that fit the definition.

13

• Punctuation
The punctuation variable type handles sentence-dividing final punctu-
ation, and includes one or more of five common kinds of punctuation: .,
!, ?, : and ;. The reason for having punctuation as a variable is to make
sure that e.g. the segments Course: and Course. match. The MT system of
CST handles punctuation, but this is no help for the TM, since the TM is
placed before the MT system in the translation workflow.

Since the value of an absolute variable is the same in both source and
target language, values are simply copied from source to target segment during
insertion and search; no modification of the value is needed.

3.1.2 Localizable variables

The values of localizable variables are elements that are translated according to
some defined local format. The formats are language-specific, but whenever an
unknown language appears (as source or target language), a generic format is
used.

• Dates
The date variable type picks up full dates in a numeric format. For
Swedish, the ISO 8601 format is used, giving the format as YYYY-MM-DD.
For English, the format DD/MM/YYYY is used. For the generic format, used
when a language is not recognized by the system, the ISO 8601 format is
used.

• Numbers
In the simplest cases, the number variable type picks up a group of digits.
For more advanced cases, thousands and decimal dividers are added,
which is also why the variable is localizable, not absolute. For Swedish the
format is I III,FF, where I is the integer part and F the fraction part of
the decimal number. The same format is also used as the generic format.
For the English locale, the format I,III.FF is used.

Different methods are used for dates and numbers when changing the
format from source to target language. For dates, the different parts of the date
(i.e., day, month and year) are individually saved from the source segment, and
put into the correct places in the target segment. Unlike dates, no re-ordering
of the parts is needed for numbers (i.e., no re-ordering of the integers and
fractions), and therefore only the dividers need to be exchanged.

3.1.3 Lexicalizable variables

Lexicalizable variables are translated through a bilingual dictionary, and are,
like localizable variables, language-specific. Unlike for the localizable variables,
no generic format can be used for the lexicalizable variables when an unknown
language is used.

• Months
The values of month variables are simply the names of the different

14

months, like January, March and so on. For the English month names,
matching is done case-sensitively (with capitalization), and for Swedish
month names, matching is done case-insensitively. The case-sensitive
matching in English is done to lower the number of incorrect matches
with the verbs may and march.

• Terms
A variable type requested by a customer of Convertus, the term variable
is very specific to the domain of course syllabi. It deals with names for
school terms, i.e. spring term and autumn term, along with their definite
versions: the spring term and the autumn term, respectively.

For translating the lexicalizable elements, a bilingual dictionary file is read
at the start of the translation of a new text. This file contains the name of the
variable type and the source and target elements. An example of a lexicon entry
is

(12) MONTH January januari

After the lexicon file has been read, the translation is as easy as replacing the
source element (January) with the target element (januari).

3.2 Insertion
The insertion function, also explained in pseudocode in figure 3.1, starts by
iterating over the eight different variable types, looking for occurrences of their
respective patterns in the source segment. If a pattern match is found, the
respective target language value of the match is generated. For example, if the
match in Swedish is the date 2015-01-19, the English translated value would
be 19/01/2015.

Before the elements recognized as variable elements are replaced by place-
holders, a number of tests are made. These tests include determining if the
variable is matched also in the target segment, and comparing the target lan-
guage value acquired with the target pattern for the current variable type. This
is especially useful for the punctuation variable type and its segment end an-
choring, since if only a check of whether the target language value is present
in the segment is done, the punctuation can end up in the wrong place. For
example, if one considers the following segment pair:

(13) Jag talade med fru Robinson häromdagen.
I spoke to Mrs. Robinson the other day.

If an element is replaced by a placeholder in the target segment without
considering the target pattern for the current variable type, the placeholder is
simply inserted at the first matched element. Inserting a punctuation variable
into the segment pair in example 13 would result in the following incorrect
segment pair being inserted in the TM:

(14) Jag talade med fru Robinson häromdagen<PUNC0/>
I spoke to Mrs<PUNC0/> Robinson the other day.

15

1: function INSERTION(source segment src, target segment trg)
2: for all variable types do
3: while src matches source pattern do
4: if variable type is localizable then
5: variable targetÐ localized source match
6: else if variable type is lexicalizable then
7: variable targetÐ translated source match
8: else
9: variable targetÐ source match

10: end if
11: if variable type is lexicalizable then
12: if no. of matches in src ‰ no. of matches in trg then
13: next
14: end if
15: else if variable type = code then
16: if trg excludes uppercase letters & spaces then
17: next
18: end if
19: end if
20: while trg matches trg pattern do
21: if trg = variable target then
22: substring at target match pos in trg Ð placeholder
23: substring at source match pos in srcÐ placeholder
24: end if
25: end while
26: end while
27: end for
28: return src, trg
29: end function

Figure 3.1: Pseudocode for the insert function.

In addition, a few special cases are dealt with. The first case deals with
homographs in segments with lexical variables, as exemplified in examples 10
and 11 in section 3.1. This is solved by not adding the variable if the number of
instances of a value is different in the source segment compared to the target
segment (e.g., one instance of maj vs. two instances of May in example 10).
The second case deals with false friends. False friends are words that look the
same in different languages, but have entirely different meanings. For example,
the word lock, which means lock in English but lid in Swedish. This becomes
a problem in segments where all letters are in uppercase, since the insertion
function then interprets the words as possible code variables. For example, the
English to Swedish segment pair

(15) CHILDREN PLAY IN THE BARN
BARN LEKER I LADAN

would without any special treatment for cases with false friends be saved in the
TM as

16

(16) CHILDREN PLAY IN THE <CODE0/>
<CODE0/> LEKER I LADAN

which of course can have negative consequences for later translations. For
example, if example 16 is saved in the TM, and the new segment CHILDREN
PLAY IN THE CLASSROOM turns up, the system would deliver the incorrect
target segment CLASSROOM LEKER I LADAN. To overcome this problem,
no code variables are added in place of a word if the segment contains multiple
words and does not contain any lowercase letters. This may not be a perfect
solution, but it is an adequate tradeoff, given the improbability of this problem
happening in an authentic text.2

In the end of the function the segment pair is inserted into the TM. If
variables were added to the segments during the insertion, the segments are
then inserted in the TM once more, this time without variables. This is done
to increase the possibility of finding a match during translation: the more TM
entries a segment can match, the greater the possibility that a match will be
found.

3.3 Search
The search function is divided in two subfunctions. In the first subfunction,
variable elements in the source segment are replaced with placeholders. Follow-
ing this, the TM database is queried for a segment pair where the TM source
segment is identical to the source segment up for translation. If a match is
found, the target segment from the database has its placeholders replaced with
the correct elements in the second subfunction.

It is necessary to have two subfunctions of the search functions. This is partly
because the source segment needs to have its elements replaced by placeholders
before the database can be queried, and partly because the target segment needs
to be retrieved from the database before the second subfunction can run.

As with the insertion function, both subfunctions of the search function
start by iterating over the different variable types. After the iteration they differ
greatly, which is further explained in section 3.3.1 and 3.3.2, and in pseudocode
in figure 3.2.

3.3.1 Placeholder insertion

In each variable type iteration, all potential variable elements in the source
segment are replaced by placeholders. The values replaced by placeholders are
saved for later use during the element insertion subfunction (see section 3.3.2).
After every variable of a type has been added, the segment with its new place-
holders inserted is saved to an array of segment suggestions.

To start with, the segment suggestion array contains the original source
segment without placeholders, and various segment suggestions are later added
whenever all possible variables of a type have been added to the segment. This
means that if the variables added to a segment are (in order) numbers, codes

2The problem was found using constructed rather than authentic segments, thus the improb-
ability is assumed.

17

and punctuation, the segments added to the segment suggestions array will
contain the following placeholders:

(17) • No placeholders
• Numbers
• Numbers and codes
• Numbers, codes and punctuation

Intuitively this might be enough. But if one considers the following Swedish to
English segment pair, from one of the corpora from the tests in chapter 4:

(18) 98/78/EG:
98/78/EC:

After placeholders have replaced elements in the segments during insertion, the
segment pair is saved as the following:

(19) <NUM0/>/<NUM1/>/EG<PUNC0/>
<NUM0/>/<NUM1/>/EC<PUNC0/>

In other words, the segments contain number and punctuation variables, but no
code variable, even though there is a part that looks like a code. No combination
like that is available in the list in example 17, and therefore more segment
suggestions need to be added.

Using combinatorics, all possible variable type combinations are calculated
and for each combination, the appropriate placeholders are added to the source
segment. With segment suggestions containing the variable combinations in ex-
ample 17 already added, segment suggestions containing the following variable
combinations are added in this combinatorics step:

(20) • Numbers and punctuation
• Codes
• Codes and punctuation
• Punctuation

Only combinations of different variable types are considered, which is a
tradeoff. On the one hand, there might e.g. be other code variables somewhere
else in the segment that should remain code variables. But on the other hand, if
all different combinations of the variables are added, the number of segment
suggestions can become too large for efficient performance, since the number of
segment suggestions grows exponentially with the number of variables. It was
e.g. not uncommon in the testing corpora (see chapter 4) with long segments
containing around 15 different numbers. If segment suggestions containing all
possible variable combinations of the 15 numbers are added, the number of
segment suggestions reaches 32,768, and this number is limited only by the
number of variables, which is unknown. However, if only the combinations of
different variable types are considered (i.e., that either all numbers or no num-
bers are replaced by placeholders in the example above), there is a maximum
amount of segment suggestions (256).

Additionally, one special case is taken care of. A segment pair like the
following is commonly found in the TM after some insertions:

18

(21) <CODE0/>
<CODE0/>

If an all-uppercase segment like TRANSLATION appears for translation from
English to Swedish, the search function will suggest that the segment is a
code variable, and include the segment <CODE0/> in the segment suggestion
list. When querying the database for this segment, a match will be found in
the segment pair in example 21. This means that the Swedish target segment
incorrectly will be given as TRANSLATION. To prevent errors of this kind from
happening, no code variables are added to the source segment if the segment
contains only uppercase letters, whitespace and/or punctuation.

3.3.2 Element insertion

As mentioned in section 3.3, the database is queried for a target segment in
between the two subfunctions of the search function. For the second subfunc-
tion, the source and target segments with placeholders, along with the original
elements replaced by variables in the placeholder insertion subfunction, are
used. In each variable type iteration, the number of variables of the current
type in the source segment is checked, and for each variable, the source value is
exchanged for the target value, in the way described in sections 3.1, 3.1.2 and
3.1.3. Finally, the current placeholder in the target segment is replaced by the
correct element.

Compared to the insertion function and the first subfunction of the search
function, this subfunction was the most trivial one, and the only one without
any need for solutions of special cases.

3.4 XML entities
In order to avoid situations where parts of any XML entities are caught up
by variables and replaced by placeholders in the insertion function and the
placeholder insertion subfunction of the search function, the XML entities
receive protection when variable elements are replaced by placeholders. This
protection replaces XML entities with the placeholder <XMLn/>, where n is
an identifying number, before the placeholder substitution is done. After the
substitution is done, the XML values are inserted into their correct places again.
Without a solution like this, a segment like Himlen var blå. would be
changed to Himlen var blå<PUNC0/> after replacing variable elements with
placeholders, thus losing the last semicolon of the XML entity.

All XML entities in a segment get protection, with one exception: XML en-
tities that are part of the Swedish term variable elements (vårtermin eller höstter-
min). If the TM needs to search for v<XML0/>rtermin instead of vårtermin,
no match will be found, and no term variable can be added.

19

1: function PLACEHOLDER INSERTION(source segment src)
2: org srcÐ src
3: push src to segment suggestions
4: for all variable types do
5: if variable type = code then
6: if org src contains only uppercase letters, whitespace and/or

punctuation then
7: next
8: end if
9: end if

10: while src matches source pattern do
11: replace variable element with placeholder in src
12: push variable element to variable sources
13: end while
14: push src to segment suggestions
15: end for
16: for all variable types found in segment suggestions do
17: push all variable type combinations to combos
18: for all combos do
19: tmp srcÐ orig src
20: for all variable types in combo do
21: replace variable type patterns with placeholders in tmp src
22: end for
23: push tmp src to segment suggestions
24: end for
25: end for
26: return segment suggestions
27: end function

1: function ELEMENT INSERTION(source segment with placeholders src, tar-
get segment with placeholders trg)

2: for all variable types do
3: for no. of variable type placeholders in src do
4: if variable type is localizable then
5: variable targetÐ localized variable source
6: else if variable type is lexicalizable then
7: variable targetÐ translated variable source
8: else
9: variable targetÐ variable source

10: end if
11: replace placeholder with variable target in trg
12: end for
13: end for
14: return trg
15: end function

Figure 3.2: Pseudocode for the placeholder insertion and element insertion subfunctions of
the search function.

20

4 Experiments

To see how the performance changes when full matching is introduced to CST,
some experiments were performed. In short, these experiments consisted of
dividing corpora into training and testing data, inserting the training data into
the TM, and using the testing data to test the performance.

The corpora used for the experiments are presented in section 4.1, and the
testing procedure is explained in detail in section 4.2. Finally, the results of the
experiments are presented in section 4.3.

4.1 Corpora
Four different corpora were used for the experiments, all in the same language
direction: Swedish to English. Three of them consist of course syllabi in different
subject areas: Humanities and Social Studies (humsam), Medicine and Pharmacy
(medfarm) and Science and Technology (teknat).

The last corpus is a subset of the Swedish to English part of a version of the

Segments Swedish words English words

humsam 1,499 15,029 18,801
medfarm 1,500 17,773 22,270
teknat 1,500 14,062 17,493
acquis 1 5,994 102,065 116,408
acquis 2 5,994 100,067 113,712
acquis 3 5,994 98,535 112,267
acquis 4 5,994 99,764 113,267
acquis 5 5,993 101,898 115,610
acquis 1 sub 1,500 25,954 29,608

Table 4.1: Statistics of the training corpora.

Segments Swedish words English words

humsam 500 4,774 5,978
medfarm 500 6,052 7,513
teknat 500 4,803 5,961
acquis 2,996 50,310 57,478
acquis sub 500 8,662 9,991

Table 4.2: Statistics of the testing corpora.

21

JRC-Acquis corpus (acquis) part of the OPUS collection (Tiedemann 2012).
The JRC-Acquis corpus consists of legislative texts of the European Union, and
of the 792,924 segments in the corpus, 32,965 randomly chosen segments were
used for these tests.

After dividing the corpus into testing and training data, the training data
was divided into five subsets of roughly the same size (acquis 1-5). Addition-
ally, acquis 1 sub, a subset of acquis 1, was used in order to compare the
different types of texts used in the experiments. A subset of the testing data
(acquis sub) was also used, to investigate the importance of testing data size.

The course syllabus corpora have the advantages of being in the domain for
CST and the kind of data a user of this particular system is likely to work with.
The disadvantage of these corpora is their size: only around 2,000 segments per
corpus, which were divided into training and testing data. The main advantage
of the acquis corpus is its comparably bigger size and repetitive content, and
the main disadvantage is that it consisted of unfamiliar content for CST.

The question of how familiar the system is with the kind of content used in
the texts is however of small importance for these tests. The overall performance
of the system will obviously be worse for an out-of-domain text, but the focus
of this thesis is the TM. Since the TM search is made before the MT decoding
in the pipeline (see section 2.2), the actual performance of the isolated TM
does not rely on the performance of the entire system.

Statistics for the training and testing corpora are gathered in tables 4.1 and
4.2, respectively.

4.2 Testing procedure

Experiment Training data Testing data Domain

1 humsam humsam humsam
2 medfarm medfarm medfarm
3 teknat teknat teknat
4 acquis 1 sub acquis sub kursgeneral
5 acquis 1 sub acquis kursgeneral
6 acquis 1 acquis kursgeneral
7 acquis 1-2 acquis kursgeneral
8 acquis 1-3 acquis kursgeneral
9 acquis 1-4 acquis kursgeneral
10 acquis 1-5 acquis kursgeneral

Table 4.3: The corpora and domain setting used for each experiment.

The training and testing corpora used for each experiment are described
in table 4.3. The training data was first formatted for direct insertion into the
TM. In other words, the regular procedure of inserting new entries into the TM
of CST, described in section 2.2, was not used here. After the segments had
been inserted into the TM, the testing data (or specifically the source language
segments of the testing data) was run through CST. For the course syllabus
corpora, the MT system was set to a setting corresponding to the respective

22

subject area of the corpus, and for the acquis corpus, the most general setting
available (a general course syllabus setting) was used, as is shown in table 4.3.

The results were evaluated using the target language segments of the testing
data as gold standard. The evaluation metric used was BLEU, which was calcu-
lated with the help of the multeval evaluation tool (Clark et al. 2011). Before
evaluating, the texts were tokenized using the Sample Tokenizer 1.1, part of
the Moses statistical machine translation system.1

This entire procedure was done two times for each experiment; one time
without variables in the TM, and one time with variables. Using the results of
the former system as baseline and comparing them with the results of the latter
system, it could be shown how the introduction of full matching affects the
performance of CST.

Additionally, CST uses a deterministic MT system. This means that given
the same source segment and settings, the target segment that is produced is
always the same. Since the translations made by the MT system for a specific
corpus are the same during all the tests, only the translations made by the TM
will be different between the two testing systems.

4.3 Results

Experiment baseline variables Increase, %

1 62.21 62.26 0.08
2 63.39 63.47 0.13
3 64.35 64.66 0.48
4 13.89 13.94 0.36
5 14.49 14.70 1.45
6 15.10 15.59 3.25
7 15.47 16.05 3.75
8 15.67 16.30 4.02
9 15.91 16.52 3.83
10 16.11 16.83 4.47

Table 4.4: The BLEU scores of the experiments, along with the percentual increases of the
BLEU score between baseline and variables.

The results of the tests described in section 4.2 are presented in table 4.4,
with baseline being the system without variables in the TM, and variables
being the system with variables.

With the smaller corpora used in experiments 1–4, the differences between
the systems are very small, with the average increase being approximately
0.26 %. The bigger testing data in experiment 5 made the increase between
the two systems go up to 1.45 %, even though the experiment used the same
training data as experiment 4. In experiments 6–10 the increase between
the two systems generally got bigger as the training data size grew, with the
exception of the change of increase between experiments 8 and 9, where the

1http://www.statmt.org/moses/

23

http://www.statmt.org/moses/

increase instead got slightly smaller. The increases for all the experiments are
presented along the BLEU scores in table 4.4.

Table 4.5 shows the number of variables inserted into the different training
corpora of variables. From the acquis corpus, only the full corpus (used in
experiment 10) is shown. The reason for this is that the results of the subsets
does not provide any new valuable information: acquis 1 have approximately
a fifth of the variables in acquis 1-5 inserted, acquis 1-2 have approximately
two fifths, and so on.

The number of variables in the different corpora gives an idea of the use-
fulness of the different variable types. The only variable that did not occur
at all was the date variable, with the reason being that although dates in the
ISO 8601 format were present in the Swedish source text of the training data
of the course syllabus corpora, the same format was used in the English target
text, and thus no dates were added during the training. And in the acquis
corpus no dates of the correct formats were present at all during training. The
usefulness of the individual variable types is further discussed in section 5.1.

humsam medfarm teknat acquis 1-5

Dates 0 0 0 0
Months 3 0 1 2160
Terms 1 1 4 0
Emails 0 0 0 2
URLs 4 0 8 0
Numbers 224 247 277 29738
Codes 108 159 310 3055
Punctuation 864 924 875 11700

Table 4.5: Occurrences of variables in the different training corpora

With the course syllabus corpora (experiments 1–3) and the full acquis
corpus (experiment 10), baseline and variables produced different outputs
on a total of 120 segments. These are divided between the corpora as follows:

• Experiment 1: 4 segments
• Experiment 2: 1 segment
• Experiment 3: 6 segments
• Experiment 10: 109 segments

The 11 differing segments from experiments 1–3 are presented in ap-
pendix A, while a selection of the differences from experiment 10 is presented
and discussed in section 5.2. For the acquis corpus, only the results of the full
corpus experiment 10 (and not any experiment using only the different subsets)
are presented. While other differences were produced using different corpus
subsets instead of the entire corpus, I have chosen to look at only the best test
results, to limit the amount of data.

Table 4.6 shows how many segments per experiment that have been trans-
lated by the TM. While the results are consistent to the results in table 4.4
considering the differences between baseline and variables, table 4.6 sug-
gests that TM in general is more useful for the acquis corpus than for the
course syllabus corpora.

24

When comparing table 4.6 with the number of differing segments, some
things might seem odd at a first glance. For example, in experiment 1, 4 and
20 segments were translated by the TM for the baseline and variables
systems, respectively, but only 4 segments differed between the two systems.
The explanation for what happened with the other 16 segments is that the
MT system in baseline and the TM in variables in these cases managed to
produce identical target segments.

baseline variables

Experiment # % # %

1 4 0.80 20 4.00
2 1 0.20 4 0.80
3 7 1.40 17 3.40
4 131 26.20 148 29.60
5 789 26.34 932 31.11
6 878 29.31 1,012 33.78
7 935 31.21 1,060 35.38
8 965 32.21 1,091 36.42
9 985 32.88 1,116 37.25
10 1,001 33.41 1,136 37.92

Table 4.6: The number of TM matches for each test, along with the percentual amount of
TM matches in the test data translations.

25

5 Discussion

The tests made in chapter 4 generally showed a slight increase in translation
quality when full matching is introduced to CST. When full matching is in-
troduced in the smaller corpora (experiments 1–5), the increase of the BLEU
score is minor, but when it is introduced in the larger corpora experiments
(experiments 6–10), the increases are considerably larger. Given the results, the
size of the increase depends mostly on the size of the training data, followed by
the size of the testing data. The type of text seems to have less importance, at
least with the types of text used in the tests of this thesis: the course syllabus
corpora and acquis corpus produced similar results (given the same amount of
training and testing). However, it is worth to notice that TM in general seems
to be more useful for the acquis corpus.

Considering that more training data means that it is probable that more
segments will be matched, it is not surprising that the increase in translation
quality is affected by the size of the training data. However, since in translation
the quality of a translated document does not depend on the size of the docu-
ment, it is somewhat unexpected that the system benefits from having bigger
testing data. The reason for this could be that having bigger testing data makes
it more probable to find matching segments, although this is just a guess.

In this chapter, the usefulness of the different variables types are discussed
in section 5.1, some examples of differences between the output of baseline
and variables are explained in section 5.2, and finally a suggestion for im-
provements of the TM used is given in section 5.3.

5.1 Variable types
The usefulness of the different variable types varied greatly in the experiments
in chapter 4. The occurrences of the different variable types in the training data
of the corpora, shown in table 4.5, give a hint of their usefulness. As mentioned
in section 4.3, no date variables were inserted in the TM. Despite this, it is my
belief that the date variable is useful, at least in the case of CST. The reason for
this is that when a text containing a date in the correct format for the language
is translated, CST delivers the target text with the date translated to the correct
format for the language, which will make the date a variable element when
inserted into the TM. Thus the date variable is a variable that interacts well
with CST.

While the month variable was almost completely absent in the course
syllabus corpora, it was one of the most frequent variable types in the acquis
corpus. This variable might arguably not be of the biggest importance specifically

26

to CST and the type of texts it usually translates, but in general, month names
are words that can occur in all sorts of domains, and I consider the variable type
useful.

The term variable is in my opinion the least useful variable type. As men-
tioned in section 3.1.3, it is a variable specific to the domain of course syllabi,
but even in the course syllabus corpora it is not a common variable, with only
six occurrences in the 4,499 segments of the training parts of the course syllabus
corpora.

Both the email and URL variables were uncommon in the training data.
However, as with months, they are words that could appear in many different
domains, and therefore have potential usefulness.

The three remaining variable types numbers, codes and punctuation were by
far the three most common ones in the training data of all corpora. The number
and punctuation variables are very useful, thanks to the fact that numbers can
occur in basically any type of text, and that most segments contain some form
of ending punctuation.

The code variable is however somewhat problematic. The variable can be
very useful, but it is not very stable, and can easily generate incorrect translations.
In chapter 3 some special cases for the code variable are handled, but there
is a possibility that other scenarios are not foreseen. This possibility exists for
all variables, but considering the amount of errors related to the code variable
that had to be dealt with during the development, problems are more likely to
occur with the code variable than with other variable types.

When it comes to variables it could arguably be a good idea to make them
domain-specific. For example, the term variable is unlikely to be found in the
JRC-Acquis corpus. Always using all variable types might not cause any damage
to the translation, but in terms of runtime, there could be gains found from
restricting the number of variable types, since the system then does not need to
search for all of them.

5.2 Differences between the two systems
For 109 segments in experiment 10, the two systems produced different results.
While the differences between many of these segments are relatively minor
(e.g., of 3 March 2005 vs. of the 3 March 2005 and 800/1999 vs. 800/1999,), six
of them are presented and discussed in this section. The following abbreviations
are used for the examples:

• src: The source segment.
• trg: The gold-standard target segment.
• bas: The output segment of baseline.
• var: The output segment of variables.

As mentioned in section 4.2, the two systems used the same machine
translations for the segments that were not translated through the TM. This
means that for all the segments that differed between the systems, at least one
of systems generated a translation through the TM. And since all the segments
inserted in the TM of baseline were also inserted among the segments in the

27

TM of variables, it is reasonable to assume that the system with the segment
translated through the TM in most cases (if not all) is variables.

(22) • src: Artikel VI
• trg: Article VI
• bas: Article WE
• var: Article VI

(23) • src: _BAR_ TOTALSUMMA _BAR_ 13380303 _BAR_ 357784
BAR 13738087 _BAR_

• trg: _BAR_ GRAND TOTAL _BAR_ 13380303 _BAR_ 357784
BAR 13738087 _BAR_

• bas: the TOTALSUMMA of the BAR the BAR 13380303 BAR
357784 BAR 13738087 BAR

• var: _BAR_ GRAND TOTAL _BAR_ 13380303 _BAR_ 357784
BAR 13738087 _BAR_

Most of the time, variables offered an improvement over baseline to
the segments that are different between the two systems. This is particularly
visible in examples 22 and 23. In example 22 baseline incorrectly analyzed
VI as an uppercase first-person plural pronoun, instead of a Roman numeral,
and translated it to WE. On the other hand, the TM of variables analyzed the
numeral as a code, and produced the correct target segment. In example 23, the
target segment produced by baseline contains an OOV (out of vocabulary)
word and unnecessarily removed underscores, while variables produced a
segment identical to the gold-standard, thanks to successful matching in the
TM.

(24) • src: med beaktande av Europaparlamentets yttrande (3), och
• trg: Having regard to the opinion of the European Parliament (3),
• bas: considering The European Parliament’s statement (3), and
• var: Having regard to the opinion of the European Parliament (3),

(25) • src: Denna förordning är till alla delar bindande och direkt tillämplig
i alla medlemsstater..

• trg: This Regulation shall be binding in its entirety and directly
applicable in all Member States.

• bas: This ordinance is to all parts binding and directly applicable in
all member states ..

• var: This Regulation shall be binding in its entirety and directly
applicable in all Member States.

(26) • src: (delgivet med nr K(2005) 191)
• trg: (notified under document number C(2005) 191)
• bas: (delgivet with no K(2005) 191)
• var: (notified under document number C(2005) 191)

In other cases, variables also produced results identical to the gold-
standard. However, the gold-standard target segments are not exactly literal
translations of the source segments. The examples in question are examples 24,

28

25 and 26. In example 24, there is a conjunction present in the end of the
source segment which is not present in the gold-standard target segment, in
example 25 the source segment ends with two periods whereas the target
segment ends with only one period and in example 26 the gold-standard target
segment contains some words lacking any equivalent in the source segment.
With these conditions it is practically impossible for an MT system to produce
a target segment that is identical to the gold-standard.

(27) • src: Förordning (EEG) nr 1617/93 ändras på följande sätt:
• trg: Regulation (EEC) No 1617/93 is amended as follows:
• bas: (EEC) no 1617/93 be changed in the following ways:
• var: Regulation (EEC) No 1617/93 is hereby amended as follows: 1.

Finally, in example 27, variables produced a target segment that is correct
(albeit slightly different from the gold-standard target segment), apart from 1.
in the end of the segment, which is not present in the source segment, or any of
the other target segments. The reason for this unexpected number and period
is likely because of a typo in the TM segment pair matched by the segment in
question.

To summarize, the analysis of the experiment 10 examples has shown
that while it is not guaranteed that the introduction of full matching will
produce correct translations, it is likely that it will make matches in the TM
more frequent. And if the segment pairs in the TM are completely incorrect
translations, the translations produced by the TM will be completely incorrect.

5.3 Implementing fuzzy matching
One solution to limit the problems of unstable and relatively useless variable
types, presented in section 5.1, could be to implement fuzzy matching, intro-
duced in section 2.1.2. With this, some of these variables (e.g., the code and
term variables) could be removed, since segments in which they appear instead
could be matched by fuzzy matching.

As shown in section 4.3, CST showed some improvements when full match-
ing was introduced, and similarly, as shown in section 2.1.3, when fuzzy match-
ing was introduced to an MT system, the performance of the MT system
increased. It is therefore possible that the performance will increase even more
when both fuzzy and full matching are implemented. This is a theory that seems
to be untested, but since it is common practice in commercial TM software to
make use of both techniques (Azzano 2012, pp. 43–44), a reasonable guess is
that the combination could be of benefit for the user.

The reason for fuzzy matching not being implemented into the TM of CST
is because of the size of the problem. While only a modification of the TM itself
is needed for the implementation of full matching, fuzzy matching requires
editing of at least the TM, MT system and user interface (to permit the user to
set the fuzzy matching threshold). Additionally, some kind of word alignment
must be applied to the segments during translation, which further increases the
complexity of the issue.

29

6 Conclusion

In this thesis, full matching has been implemented into a TM part of an MT
system, in order to answer the question of how this affects the translation
quality. What is clear is that when full matching is introduced to a TM, the
translation quality increases. However, the size of the increase depends on some
different factors.

The biggest factor is the amount of segments inserted in the data: the
more segments inserted, the bigger the chance that a new segment will match
something in it. The size of the document up for translation is also a factor of
importance, although it is not quite clear why. Lastly the type of text seems to
be of less importance. However, this might be because of the properties of the
two types of text used in the tests of this thesis: with other types of text the
type might be of greater importance.

Having a well-filled TM does not necessarily mean that the translation
quality will be high for a new document, even if matches are found for many of
its segments. This depends on what has been inserted in the TM: if the segment
pairs in the TM are incorrect and/or inconsistent, the translations made by
the TM will subsequently follow the same pattern and deliver translations of
questionable quality.

Future work could be to implement fuzzy matching alongside the full
matching, which might improve the translation quality, compared to having
only fuzzy matching or full matching.

30

Bibliography

Azzano, Dino (2012). ‘Placeable and Localizable Elements in Translation
Memory Systems’. PhD Thesis. Ludwig Maximilian University of Munich,
Center for Information and Language Processing.

Clark, Jonathan H., Chris Dyer, Alon Lavie and Noah A. Smith (2011). ‘Bet-
ter Hypothesis Testing for Statistical Machine Translation: Controlling for
Optimizer Instability’. In: Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies: short
papers - Volume 2, pp. 176–181.

Gow, Francie (2003). ‘Metrics for Evaluating Translation Memory Software’.
Master’s Thesis. School of Translation and Interpretation, University of
Ottawa.

Koehn, Philipp and Jean Senellart (2010). ‘Convergence of Translation Memory
and Statistical Machine Translation’. In: AMTA Workshop on MT Research
and the Translation Industry, pp. 21–31.

O’Reilly, Tim and Ben Smith (1998). The Importance of Perl. URL: http://
archive.oreilly.com/pub/a/oreilly/perl/news/importance_0498.
html (visited on 27/03/2015).

Pettersson, Eva (2010). Kursplaneöversättaren - Ett automatiskt översättningsstöd
för översättning av akademiska kursplaner från svenska till engelska. Presenta-
tion. Uppsala, Sweden: Convertus AB.

Sågvall Hein, Anna, Eva Forsbom, Per Weijnitz, Ebba Gustavii and Jörg
Tiedemann (2003). ‘MATS - A Glass Box Machine Translation System’. In:
Proceedings of the Ninth Machine Translation Summit. New Orleans, USA,
pp. 491–493.

Tiedemann, Jörg (2012). ‘Parallel Data, Tools and Interfaces in OPUS’. In:
Proceedings of the Eight International Conference on Language Resources and
Evaluation (LREC’12). Istanbul, Turkey, pp. 2214–2218.

Wang, Kun, Chenqing Zong and Keh-Yih Su (2013). ‘Integrating Translation
Memory into Phrase-Based Machine Translation during Decoding’. In: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational
Linguistics. Sofia, Bulgaria, pp. 11–21.

Weijnitz, Per, Anna Sågvall Hein, Eva Forsbom, Ebba Gustavii, Eva Pettersson
and Jörg Tiedemann (2004). ‘The machine translation system MATS -
past, present & future’. In: Proceedings of Recent Advances in Scandinavian
Machine Translation (RASMAT’04). Uppsala, Sweden.

Zhechev, Ventsislav and Josef van Genabith (2010). ‘Seeding Statistical Machine
Translation with Translation Memory Output through Tree-Based Structural
Alignment’. In: Proceedings of the 4th Workshop on Syntax and Structure in
Statistical Translation. Beijing, China, pp. 43–51.

31

http://archive.oreilly.com/pub/a/oreilly/perl/news/importance_0498.html
http://archive.oreilly.com/pub/a/oreilly/perl/news/importance_0498.html
http://archive.oreilly.com/pub/a/oreilly/perl/news/importance_0498.html

A Output differences

In this appendix, the segments from experiments 1–3 (the course syllabus
corpora) that differed between the output of baseline and variables are
shown. The following abbreviations are used:

• src: The source segment.
• trg: The gold-standard target segment.
• bas: The output segment of baseline.
• var: The output segment of variables.

Experiment 1 (humsam)
1. • src: Delkurs 1.

• trg: Component 1.
• bas: Module 1.
• var: Sub-course 1.

2. • src: Delkurs 3;
• trg: Module 3;
• bas: Module 3;
• var: Sub-course 3;

3. • src: Efter genomförd Delkurs 1 skall studenten:
• trg: After implemented Module 1, the student should:
• bas: After completed Module 1, the student should:
• var: After implemented Module 1, the student should:

4. • src: Efter genomförd delkurs 1 skall studenten:
• trg: After implemented Module 1, the student should:
• bas: After completed Module 1, the student should:
• var: After implemented Module 1, the student should:

Experiment 2 (medfarm)
1. • src: Ersätter och motsvarar tidigare kurs 3FX117 Toxikologi,

läkemedelsmetabolism och säkerhetsvärdering.
• trg: Substituting a corresponding earlier course 3FX117 Toxicology,

drug metabolism and safety assessment.
• bas: Substituted and corresponded earlier the 3FX117 of course

Toxicology, drug metabolism and saftey assessment.

32

• var: Substituting a corresponding earlier course 3FX117 Toxicology,
drug metabolism and saftey assessment.

Experiment 3 (teknat)
1. • src: Det får påbörjas tidigast efter uppnådda 24 hp samt då slutbetyg

föreligger i relevanta kurser, som berör examensarbetets innehåll
• trg: [It may be started, at the earliest, after 24 achieved HE credits

and when final grades exist in relevant courses that concern the
contents of the degree project

• bas: It may be started at the earliest after achieved 24 credits and
then final grade exist in relevant courses that concern the contents
of the degree project

• var: It may be started, at the earliest, after 24 achieved HE credits
and when final grades exist in relevant courses that concern the
contents of the degree project

2. • src: Mål
• trg: Learning Outcomes
• bas: Learning outcomes
• var: Objective

3. • src: För studier i årskurs 3:
• trg: For studies in school year 3:
• bas: For studies at school year 3:
• var: For studies in school year 3:

4. • src: Produktutveckling, 120 högskolepoäng
• trg: Product Development, 120 credits
• bas: Development in production, 120 credits
• var: Product Development, 120 credits

5. • src: Litteraturuppgift 1 hp;
• trg: Literature assignment 1 hp;
• bas: Literature assignment 1 credit;
• var: Literature assignment 1 hp;

6. • src: Teori 11 hp;
• trg: Theory 11 hp;
• bas: Theory 11 credits;
• var: Theory 11 HE credits;

33

	Acknowledgements
	1 Introduction
	1.1 Purpose
	1.2 Outline

	2 Background
	2.1 Translation Memory
	2.1.1 Full matches and variables
	2.1.2 Fuzzy matches
	2.1.3 Translation Memories in Machine Translation

	2.2 Convertus Syllabus Translator

	3 Implementation
	3.1 Variables
	3.1.1 Absolute variables
	3.1.2 Localizable variables
	3.1.3 Lexicalizable variables

	3.2 Insertion
	3.3 Search
	3.3.1 Placeholder insertion
	3.3.2 Element insertion

	3.4 XML entities

	4 Experiments
	4.1 Corpora
	4.2 Testing procedure
	4.3 Results

	5 Discussion
	5.1 Variable types
	5.2 Differences between the two systems
	5.3 Implementing fuzzy matching

	6 Conclusion
	Bibliography
	A Output differences

